





| energie | atomique | • energies | alternatives |
|---------|----------|------------|--------------|
|---------|----------|------------|--------------|

A low diffusive Lagrange+Remap scheme for the simulation of violent air-water free-surface flows. Applications to dam-break and sloshing events.

## <u>Aude Bernard-Champmartin<sup>1,2</sup></u>, Florian De Vuyst<sup>1</sup>

1: CMLA, ENS Cachan/ LRC ENS Cachan - CEA DAM

2: Present adress: INRIA Nice and LRC MESO ENS Cachan - CEA DAM

- Simulation of free surface flows
  - Dam-break events, Offshore pipes, Sloshing events, Effects of tidal bore...
- All these examples imply a large deformation of the interface between the two fluids: **an accurate method to follow the interface is required.**

We focus on:

- Air/water simulations: two fluids with a high ratio of density
- Physical effects that have to be taken into account:
  - Effects of the compressibility of the air
  - Since  $\rho_l / \rho_g \simeq 1000$ , Archimède's buoyancy effects
  - Air pocket formation
- We neglect:
  - Surface tension
  - Viscosity of the fluids

### **Choice of the modelisation**

#### • Choice of the **numerical method**

- Particle methods (mesh-less)
  - Simulation using SPH (Smoothed Particle Hydrodynamics) techniques or MPS (Moving particle semi-implicit)
  - Without numerical diffusion at the interface
  - Need an high number of particles high computational cost
- Numerical methods with a mesh
  - With interface capturing or interface tracking
  - Able to follow large deformation of the interface
  - Diffusion at the interface.
- Treatment of the liquid which is quasi-incompressible
  - as a compressible fluid with a stiff equation of state
     Less computational cost (than solving the Poisson equation)
     High celerity of sound which leads to a reduction of the time step

• For the air, we use an isentropic **perfect gas law**:

$$p_g(\rho_g) = P_0 \left(\frac{\rho_g}{\rho_{g0}}\right)^{\gamma_g}$$
  $\gamma_g = 1.4, \ \rho_{g_0} = 1.28, \ P_0 = 10^5$ 

- For the water:
  - We use an isentropic **modified Taït EOS** for the liquid

$$p_l(\rho_l) = P_0 \left( 1 + K \left( \left( \frac{\rho_l}{\rho_l^0} \right)^{\gamma_l} - 1 \right) \right) \qquad K = \frac{\rho_l^0 c_s^2}{P_0 \gamma_l} \quad \text{Bulk modulus}$$

with for instance:  $\gamma_l = 7$ ,  $\rho_l^0 = 1000$ ,  $c_s = 350 \text{ m.s}^{-1}$ , (*K* = 175)

**Weakly compressible**: if 
$$P = \frac{P_0}{2}$$
,  $\rho = 999.59$ 

A four equation volume-averaged air-water model with pressure equilibrium closure

$$\partial_{t}(\rho) + \nabla \cdot (\rho u) = 0$$

$$\partial_{t}(\rho c_{g}) + \nabla (\rho c_{g} u) = 0$$
where
$$p: mean density$$

$$u: mean velocity$$

$$c_{g}: concentration of gas$$

$$\partial_{t}(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla p = \rho g$$

$$g: gravity$$
volume fraction of gas
with
$$\rho = \alpha \rho_{g} + (1 - \alpha) \rho_{l}$$

$$density of gas$$

$$density of liquid$$

$$m_{g} = \alpha \rho_{g} V,$$

$$m_{l} = (1 - \alpha) \rho_{l} V$$
pressure equilibrium assumption to
get  $\alpha$  and then  $\rho_{g}$  and  $\rho_{l}$ :
$$p = P_{g}(\rho_{g}) = P_{l}(\rho_{l})$$
solved
$$p: mean density$$

$$\mu: mean velocity$$

$$u: mean velocity$$

$$c_{g}: concentration of gas$$
and
$$c_{g} = \frac{\alpha \rho_{g}}{\rho} = \frac{m_{g}}{m} \in [0,1]$$

$$m_{g} = \alpha \rho_{g} V,$$

$$m_{l} = (1 - \alpha) \rho_{l} V$$
with a Newton algorithm
$$p = P_{g}(\rho_{g}) = P_{l}(\rho_{l})$$

• Solved with a Lagrange-remap scheme: BBC

[WC84] P. Woodward and P. Colella J. Comp. Phys., 54, 115 (1984).



The lagrangian phase:

- Use multistep in time (predictor-corrector scheme)
- Centered in space
- Use of a pseudo-viscosity to stabilize the scheme

## **LOW-DIFFUSIVE PROJECTION**

• At the end of the lagrangian phase: **deformed mesh** 

New volume of a cell:  $V_{i,j}^{n+1,L} = V_{i,j}^n + \Delta t \Delta y \left( u_{i+1/2,j}^{n+1/2,L} - u_{i-1/2,j}^{n+1/2,L} \right) + \Delta t \Delta x \left( v_{i,j+1/2}^{n+1/2,L} - v_{i,j-1/2}^{n+1/2,L} \right)$ 



 $\Rightarrow$  Projection of the quantities on the cartesian cell of volume  $\Delta x \Delta y$ .

- First step: projection along the x direction: on the intermediate volume  $V_{i,j}^{n+1,*}$ :  $V_{i,j}^{n+1,*} = V_{i,j}^{n+1,L} \Delta t \Delta y \left( u_{i+1/2,j}^{n+1/2,L} u_{i-1/2,j}^{n+1/2,L} \right)$
- Second step: projection along the y direction:

$$V_{i,j}^{n+1} = V_{i,j}^{n+1,*} - \Delta t \Delta x \left( v_{i,j+1/2}^{n+1/2,L} - v_{i,j-1/2}^{n+1/2,L} \right) = \Delta x \Delta y$$

### **Projection of the masses at first order**

• We focus on the first step of the projection (the second is similar):

 $\begin{array}{l} \text{Mass of gas in the intermediate volume } V_{i,j}^{n+1,*}:\\ m_{gi,j}^{n+1,*} = m_{gi,j}^{n} - \Delta t \Delta y \Big[ u_{i+1/2,j}^{n+1/2,L} \alpha_{i+1/2,j}^{n+1,L} - u_{i-1/2,j}^{n+1/2,L} \alpha_{i-1/2,j}^{n+1,L} \rho_{gi-1/2,j}^{n+1,L} \Big] \ \text{(1)} \\ \text{Mass of liquid in the intermediate volume } V_{i,j}^{n+1,*}:\\ m_{li,j}^{n+1,*} = m_{li,j}^{n} - \Delta t \Delta y \Big[ u_{i+1/2,j}^{n+1/2,L} (1 - \alpha_{i+1/2,j}^{n+1,L}) \rho_{li+1/2,j}^{n+1,L} - u_{i-1/2,j}^{n+1/2,L} (1 - \alpha_{i-1/2,j}^{n+1,L}) \rho_{li-1/2,j}^{n+1,L} \Big] \ \text{(2)} \end{array} \right\} \ \text{written in conservative form} \\ \text{where: } V_{i,j}^{n+1,*} = V_{i,j}^{n} + \Delta t \Delta x \Big( v_{i,j+1/2}^{n+1/2,L} - v_{i,j-1/2}^{n+1/2,L} \Big) \end{array}$ 

• How to calculate the values at the edges  $\alpha_{i\pm 1/2,j}^{n+1,L}$  and  $(\rho_{g/l})_{i\pm 1/2,j}^{n+1,L}$ ?

First choice:  
upwind of the 
$$\alpha_{i\pm1/2,j}^{n+1,L,\text{upw}} \rho_{gi+1/2,j}^{n+1,L,\text{upw}} = \begin{cases} \alpha_{i,j}^{n+1,L} \rho_{gi,j}^{n+1,L} \text{ if } u_{i+1/2,j}^{n+1/2,L} \ge 0 \\ \alpha_{i+1,j}^{n+1,L} \rho_{gi+1,j}^{n+1,L} \text{ if } u_{i+1/2,j}^{n+1/2,L} < 0 \end{cases}$$
  
stable but **diffusive**.

### Low diffusive projection

 Other choice for the fluxes: we applied a low-diffusive procedure initially developped for the advection of a quantity *F. Lagoutière, PhD Thesis (2000)* and extended for a two-fluid sytems *S. Kokh, F. Lagoutière J.C.P 2010*



• **Idea**: take the advantage of both upwind and downwind scheme:

choose  $\alpha_{i+1/2}^{\text{LowDiff}} \in \left[\min(\alpha_{i+1/2}^{\text{down}}, \alpha_{i+1/2}^{up}), \max(\alpha_{i+1/2}^{\text{down}}, \alpha_{i+1/2}^{up})\right]$  to be less diffusive as possible while being stable.

• The interface is followed thanks to 2 quantities:

•  $\alpha = \frac{\text{Vol of gas}}{\text{Vol total}} \in [0,1]$  volume fraction of gaz •  $c_g = \frac{m_g}{m_{\text{tot}}} \in [0,1]$  mass fraction of gaz  $\alpha (\rho_g, \rho_l, c_g) = \frac{c_g \rho_l}{c_g \rho_l + (1 - c_g) \rho_g}$   $c_g (\rho_g, \rho_l, \alpha) = \frac{\alpha \rho_g}{\alpha \rho_g + (1 - \alpha) \rho_l}$ 

• The quantity  $c_g$  is advected  $\partial_t c_g + u \cdot \nabla c_g = 0$ 

respect a maximum principle

- So the projected value  $c_{s_{i,j}}^{n+1,*}$  has to respect a discrete maximum principle
- The projected value  $\alpha_{i,j}^{n+1,*} \in [0,1]$  thanks to the pressure equilibrium assumption using the projected partial masses  $m_{gi,j}^{n+1,*}$  and  $m_{li,j}^{n+1,*}$ .

(If  $m_{g_{i,j}}^{n+1,*}$  and  $m_{l_{i,j}}^{n+1,*} \ge 0$ .)

How to choose the flux  $\alpha_{i+1/2}$ 

1) Construct an interval I (**trust interval**),  $I \neq \emptyset \subset [h_{i+1/2}, H_{i+1/2}]$ with  $h_{i+1/2} = \min(\alpha_i, \alpha_{i+1}) = \min(\alpha_{i+1/2}^{up}, \alpha_{i+1/2}^{down})$  and  $H_{i+1/2} = \max(\alpha_i, \alpha_{i+1})$ 

Maximum principle for 
$$c_{gi+1/2,j} c_{gi,j}^{n+1,k}$$

If  $\alpha_{i+1/2} \in I$ , we ensure consistance and stability properties of the projection scheme for the concentration of gas  $c_g$ 

#### $I = I_1 \cap I_2$ as an intersection of 2 conditions

2) Low-diffusive procedure:

$$\alpha_{i+1/2} = \alpha_{i+1/2}^{\text{LowDiff}}$$
Choose  $\alpha_{i+1/2} \in I$  less diffusive as possible: take  $\alpha_{i+1/2}^{\text{Low Diff}}$  the closest value to  $\alpha_{i+1/2}^{\text{down}}$  but staying in I.
Case B
$$\alpha_{i+1/2}^{\text{Low Diff}}$$
Case C
$$\alpha_{i+1/2}^{\text{Low Diff}}$$
Case C



LRC ENS Cachan – CEA DAM

# SIMULATIONS WITH THE CODE ODYSSEY

#### • Collapse of a liquid column with an obstacle



O. Ubbink Numerical prediction of two-fluid systems with sharp interfaces, PhD thesis (1997)

### **Simulations- Collapse with an obstacle**



### **Simulations- Collapse with an obstacle**

### Evolution of $\boldsymbol{\alpha}$ with the code Odyssey with diff.method of projection



### **Simulations**

#### • Collapse of a liquid column with an obstacle



Exp: from Koshizuka et al A particle method.. Comp. Fluid Mech. 1995

D. M. Greeves Simulation of viscous water column



### **Simulations of a Dam-break**



LRC ENS Cachan – CEA DAM

Gdr EGRIN – 4th April

Page 20

### **Simulations of a Dam-break**



### Numerical diffusion appears due to filamentation/fragmentation



LRC ENS Cachan - CEA DAM

Gdr EGRIN – 4<sup>th</sup> April

### **Velocity field**



LRC ENS Cachan – CEA DAM

• Sloshing due to the **pitch motion** of a rectangular tank:



### **Sloshing test cases – pitch motion**

### **Sloshing test cases – pitch motion**

We superimpose the profile of the article: J.R. Shao *et al*. An improved SPH method for modeling liquid sloshing dynamics. Comp. Fluids 2012



• Sloshing due to the **surge motion** of a rectangular tank:



Two frequencies are acting  $\omega_{\scriptscriptstyle \mathrm{fluid}}$  and  $\omega_{\scriptscriptstyle \mathrm{forced}}$ 

Experimentals results are available:

O.M. Faltinsen *et al* . Multidimensional modal analysis... J. Fluid. Mechanics 2000

#### Free surface elevation of water at the probe 0.3 0.25 with Odyssey 0.2 0.15 0.1 Scanned experimental H-h<sub>w</sub> (m) 0.05 results of 0 O.M. Faltinsen et al. **Multidimensional modal** -0.05 analysis... J. Fluid. Mechanics 2000 -0.1 -0.15 -0.2 2 0 6 8 10 4 t (s)

LRC ENS Cachan – CEA DAM

We search to **find a fit of** our curve with a function as a superposition of two signals



### Free fall of liquid and impact with liquid at rest



| Lx = Ly = 0.584  m    |
|-----------------------|
| H = Ly / 4 = 0.146  m |
| d = H = 0.146  m      |
| Nx = Ny = 350         |



### Free fall of liquid and impact with liquid at rest



### Free fall of liquid and impact with liquid at rest



### Conclusion

- Simulations of free-surface flows with an Eulerian numerical method
  - Lagrange-Remap scheme
  - An anti-diffusive approach on the gas mass fraction
- The low-diffusive projection allows us to keep a thin interface between the two-fluids
  - We can observe the formation of air-pocket, formation of blast, ejection of droplets, fragmentation...
- The test cases show a good agreement between experiences and other codes : dam break, sloshing events.
- Some videos of simulation with the code Odyssey are available on You Tube:

http://www.youtube.com/user/audeBChampmartin

http://www.youtube.com/user/floriandevuyst

- Allowing more boundary conditions in the code (only wall boundary condition up to now)
- Taking into account physical viscosity, surface tension.
- Parallelization of the code.

- Publications
  - "A low diffusive Lagrange-remap scheme for the simulation of violent air water free-surface flows." A.Bernard-Champmartin and F. De Vuyst.

submitted to Journal of Computational Physics

http://hal.archives-ouvertes.fr/hal-00798783

• "A low diffusive Lagrange-remap scheme for the simulation of violent air water free-surface flows. Applications to dam-break and sloshing events." In preparation.