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1. Setting of the problem

General concern: The effect of wall-roughness on fluid flows.

Two motivations for its study.

Motivation 1: computation of fluid flows
Pbs:
» Details of the roughness are unknown
» Too small for computational grids
Hope: to describe some averaged effect.

Idea: Replace the rough boundary by an artificial smooth one.
Prescribe there a homogenized boundary condition: wall law.

Question: What is the good wall law ?



Motivation 2: Microfluidics

Issue: To make fluids flow through very small devices.

Minimizing drag at the walls is welcome.

Many theoretical and experimental works.
[Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not
always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results are still debated . ..

... Maths may help, notably through a homogenization approach.



2. A simple model

2D rough channel: Q*=QUXYX UR*®

» Q : smooth part: R x (0,1).
» R : rough part, typical size ¢ < 1.
R = {x=(x1,x), 0>x>cw(xi/e)}
w with values in (=1, 0), and K-Lipschitz.
» Y : interface: R x {0}.



Stationary Navier-Stokes, with given flow rate:

u-Vu—Au+Vp =0, xeQ°,
divu=0, xe€Q°, (NS?)

ulags =0, / up = ¢,
o

with ¢ > 0, o vertical cross-section.
Remark: Possible generalizations: 3D, unsteady flows.
Problem: Asymptotics € — 0.

Aim:

» To approximate u® by a solution of Navier-Stokes in 2.

» To find the best effective (meaning regular in £) boundary
condition at X.



3. Asymptotics

a) Zeroth order approximation: Dirichlet boundary condition

&

Idea: Ut =~ up

where up is the solution of Navier-Stokes in €2, with wall law

Solution: Poiseuille Flow : up = up(x2) = (6¢x2(1 — x2),0).
Remark: Infinite channel : functions have infinite energy.
Theorem: For ¢ and € small enough, (NS®) has a unique solution

¢ in HY, .(Q%). Moreover,

lu* = upllp,_o) < CVE,
Ce.

IN

|u® — UDHLﬁ,OC(Q)



Remarks:
» Smallness of ¢ : natural for well-posedness.
» Requires only w to be bounded and uniformly Lipschitz.

» Even well-posedness is not obvious. Lack of a priori bounds.

A typical sequence of approximations u;, will satisfy
€12 __
| 4196 = 0(n) o +oc

Pb: To show that the energy does not concentrate.

Idea: [Ladyzenskaya et Solonnikov'83]
Ey ::/ IVui?, Q% := Q°n{|x]| <k}
Q0

One shows by induction on n — k that Ex = O(k) for all k < n.



Possible here thanks to the induction relation
E,<C (Ek+1 — Ep) + (Ery1 — E)¥? + Kk + 1) .

Simpler example:

—Aut =1 in Qa, u|aga =0.
Multiply by xxu®, with xx = 1 over QF, integrate:
/ k| Ve < / VXKV + | xR
Qs Qs Qs
Then :

/ |V < c(/ |Vu5|2—|—/ |u8|2+k+1>.
a: 9\ 9\

Crucial ingredient: Poincaré's inequality in a channel.




We find: Ek < C((Ek+1 - Ek) + k + 1).
For Navier-Stokes:

» The term (Eiy1 — Ex)3/? comes from the nonlinearity.

» The pressure term must be treated carefully.

Conclusion: The no-slip condition provides a O(¢) approx. in L2.
Can we find a better one 7

b) First order approximation: Navier boundary condition

Two ideas behind this slip.
Idea 1: uF = up + 6¢ev (%),

v = v(y): Boundary layer corrector. Cancels the trace of up at I©.



le

o(li /\/\/\w/\/\/\/

o)

Defined on Q' := {y» > w(y1)}. Formally,

—Av+Vp =0, yeQb/7
divv=0, yeQ?,
v(y) = (~w(n),0), ye Q"

Idea 2: The boundary layer generates a non-zero mean flow

v—v>®=(a,0), asy»— +oo, for some a > 0.

(BL)
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Consequence: Formal expansion yields

u¥ ~ up + 6¢e(a,0) + o(e) in L?

A better approximation should be the solution uy of NS in Q with
Navier boundary condition:

Pb: To make these formal ideas rigorous !

The analysis of system (BL) is difficult.

» Well-posedness:
No tangential decay at infinity. Requires local bounds.
No Poincaré’s inequality.
No maximum principle, no Harnack's inequality.

» Behaviour as y» — +o00 7



One easier setting: periodic roughness. [Achdou et al, Jager et al|

» Solvability: Variational formulation in a space of functions
periodic with respect to yi.

> y» — 400 : Fourier series in y;. Convergence at exponential
rate of v to («,0),

L
o= L_l/o vi(y1,0) dy;.

General setting: much harder.

Still: Well-posedness holds for general w.

Theorem: System (BL) has a unique solution v € H}(QP)
satisfying

sup / IVv|? < +o0,
keZ JOp,

where Q£{k+1 = QY N{k <y <k+1}.



Proof: Inspired by transparent boundary conditions in numerical
analysis.

Idea 1: To restrict system (BL) to the lower part of QY
Qb — = QP N {y, <0}

Pb: What condition at the upper boundary y» =07

Formally: —Av 4+ Vg = 0 in the half-plane y» > 0.
Fourier transform in y;. Solve the ODE in y».

The condition at y» = 0 is given by

(82V - qe2) ’y2:0 = DN(V‘,V2=0)

where DN is a Dirichlet to Neumann operator defined formally by

FDN(w)(©) = (T2 ) Fwl©):



Idea 2: The domain Q% is a bounded channel. Methods used in
Theorem 1 can apply.
Difficulties:
» To extend the DN operator to Hul/o2c( R).
» To justify the equivalence between the original system and the
new one.

» To prove the induction on the truncated energies Ey despite
the non-local character of DN.

Question: Asymptotic behavior ? Does v — v as y» — +o0 ?
Y Yy

Claim: Very unlikely to be true.



Dirichlet problem: | Av =0 in y, >0, V‘yzzo =V

» If vy 1-periodic, then v(0,y2) — fol vp exponentially fast.
> There exists vo € L°°(R) such that v(0, y») has no limit.
Take vo = (—1)k in [a¥, a*"], y» =2", and use the formula

1 Y2

v(0,y2) = g /RWVo(t) dt.

Remark: vg with values in {41, —1}: close to coin tossing.

Suggests random modelling of the roughness.



c) Random roughness.

Realistic modelling: Roughness randomly distributed, following a
Stationary process.

Basically: We endow the set of all possible boundaries
P = {w with values in (—1,0), K-lip}

with the cylindrical o-field, and a probability measure p.

Stationarity: w is invariant under the group of translations

Th:P— P, ww—w(-+h).

Domains Q¢, QY functions u¢, v ...depend on w.



Theorem 3:  There exists a = a(w) € L%(P) such that:

Ju® = UNHL%,OC(PxQ) = o(¢)

with

£12 =supE f|*dx d
1122, (pxy = sup m{\xl—t\d}‘ o

Remark: « explicit, linked to (BL). If u is ergodic, « does not
depend on w.
Proof:: Keypoint is to show that v — («,0) as y» — +oo.

Idea 1: Use of Stokes double layer potential: for all y» > 0,

V(“?Y) = G('vy2) * V|y2:0(y1) )

Gly) = 2 ( y? }/1}’2)'

7 (y2+y2) ny: y3




Idea 2: Ergodic theorem:

Jim / w,y1 — h,0)dh = v™(w) = (a(w), 0)

Convergence a.s., and in LP(P) with finite p, uniformly local in y;.
If u is ergodic, v® is constant.
One concludes through integration by parts in the integral

formulation.

Summary:
Dirichlet’s wall law: O(e) approx.
Navier's wall law: o(g) approx. Can we say more ?



Remark: The integral formula for v involves a family of mappings
indexed by y»:

$72 V0 = G(-y) VO

Defines (at a formal level) a semi-group. Behaviour as y, — +00
is linked to the spectral properties of 572.

Periodic roughness: v0 = v9(y;) is periodic.

S”2 contraction in L2(T). Fourier in y:

- 1 simple eigenvalue associated to constant functions.
- Spectral gap, hence convergence at exponential rate.

Hence, ¢|lv(x/e) — v®| = O(e%/?) — Navier's law: O(£3/?).



Stationary roughness:

VO = vo(w,yl) = vO(Tyl(w),O).

S”2 contraction in L2(P). Spectrum can be more complicated.

Ergodic th :  ¢|lv(x/e) — v*>®°|| = o(g). — Navier's law: o(e).

Questions: Speed of convergence for v 7 Csq on Navier law
Formally, spectrum related to the spectrum of the shift
[2(P) — L%(P), V — Vor,

If T, is mixing, this operator has continuous spectrum.
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Problem: To quantify the dispersion created by the continuous
spectrum.

Tool: Central limit theorem.
Remark: Analogy with coin tossing.

Aim: To quantify the speed of convergence of

1 N 1 n—1 .
= h0)dh = = S X
v | viw.n0)d j X )

with XK = [K1y(w, h,0) dh.

If the random variables X* were independent: Central limit
theorem.
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Decay of correlations : In brief, if correlations between X, and X,
decay fast enough as |k — I| — oo, the central limit theorem is still
valid.

This suggest the following assumption on the roughness
distribution:

(H): Independence at large distances:

o(y1 = w), y1 <a) and o (y1 — w(y1), y1 > b)

are independent for b — a small enough.
Remark: Far from the periodic case.
Another technical assumption:

(H"): Measure p has support P, = {w € P, |lw|c2e < Ka}-
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Theorem:  Under assuptions (H), (H'), % foN v(w, h,0) dh satisfies
a central limit theorem.

Theorem':

VY2 lv(es - y2) = all 2

uloc

—— 0 > 0.
(PxR) Y2400 =

—  Navier's wall law: O(e3/?|In¢g|'/?).

Idea of the proof: To show that (H) implies a good decay of
correlations for the spatial process v(w, y1,0).

In brief, resumes to the following problem:

Show that if wy = wa on [—n, n], then the corresponding solutions
of (BL) satisfy for some o > 1/2.

True with a =1!

2/



Difficulties: Not defined on the same domain, estimate at a single
point.

Idea: Estimate on the Green function G,(z,y), satisfying

_AGw(Zy')—i_VPw(Za') :62 I2> Y2 >W(YI)7
Gw(27 ) =0, y2= w()/1)-

coupled to the formula

v(w,0,0) = / Go(0, y)er dy
{y2=0}

Key estimate: For all z,y s.t. |[z—y| > 1,

5(2)(1+5(y))

V,G,(z, < C
| y ( y)| ’Z—y’2

where § is the distance to the boundary.
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Remark: For large values of |z — y| , the oscillating boundary can
be seen as low amplitude and high frequency. (e = |z —y|™1).

Requires refined regularity estimates for Stokes, in

D?(0,1) := D(0,1) N {x2 > ew(x1/e)}

If u satisfies

—Au+Vp=divf, xec D(0,1)
divu=0, xe€ D(0,1)
u=0, xerl*(0,1)

then || Vull(p=(01/2)) < € (Ilullizoe(0.1y) + I Fllcor (o201

Inspired by works of Avellaneda and Lin on the homogenization of
elliptic operators with periodic coefficients.
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4. Real or apparent slip ?

Summary: Rigorous derivation of a Navier condition at X.

Question: Does it prove that roughness enhances slip 7

Not clear ! The positivity of « is linked to the position of our
artificial boundary (namely above the humps).

If we keep the artificial boundary at xo = 0 and shift the
roughness, things change.

Example: periodic roughness. One shows [Achdou et al, Jager et al]

afw+h) = a(w)—h, Vh,
sup—w < a(w) < inf —w.

In our setting : w <0, so a> 0.
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Only meaningful case: < w >= 0: same averaged flow rate in the
rough and smooth channels.

Problem: Find the maximizer and maximum of

dw) = a(w) — <w >
among all rough profiles w € W1°(T) (W1*°(T?) in 3d ).
Proposition: Maximum slip coefficient is achieved for flat surfaces:

max a(w) = a(0) = 0.

Conclusion: apparent slip, not real.



5. Back to microfluidics]

Question: May rough surfaces generate significant slip ?

Preliminary mathematical question:

Is there a "microscopic" condition at 9Q° that can give rise to
"macroscopic" slip at 02 ?

Intuition: Yes, at least if we consider some pure slip at 9€2°:

lu-1Floge =0, D(u)v® x v|og- =0.| (S)
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5. Back to microfluidics]

Question: May rough surfaces generate significant slip ?

Preliminary mathematical question:

Is there a "microscopic" condition at 9Q° that can give rise to
"macroscopic" slip at 02 ?

Intuition: Yes, at least if we consider some pure slip at 9€2°:

|u-17log- =0, D(u)v" x 1°|oge =0.| (S)

Answer: No, as soon as the roughness is non-degenerate !

See [Casado-Diaz et al, 03], [Bucur et al, 08]
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Broadly, under the assumption

(A) The Young measures 1, (y € R) associated to the sequence
(w'(-/€)) have a non-trivial support for a.e. y,

any weak accumulation point u of a sequence of solutions (u¢) in
HL _(Q) will satisfy u|sq = 0.

Example: If w is periodic and non-cst, u|spq = 0.

Formal idea:

Vanishing of the normal component + high frequency oscillations
of the boundary + bound on Vu*®

— vanishing of the whole velocity as ¢ — 0.
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One can be more quantitative, under a slightly different
assumption:

(A’) There is C > 0, such that for all u € C°(R),

U V(= =0 = llullzry < ClIVullizr)

Theorem: There exists ¢g > 0 such that for all ¢ < ¢p, € <1,
system (NS€)~(S) has a unique solution u® € HY, _(F).
Moreover, if (A’") holds,

I —ullm @) < Cove, [l —ullz (@) < Ce,

where u is the Poiseuille flow in Q (that satisfies u|pq = 0).
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Remarks

1. The theorem shows that the effective slip can not be more
than O(e).

Boundary layer analysis: under ergodicity properties of w, one
shows that the effective slip is indeed O(e).

2. Assumption (A"):
Amounts to (A) for periodic or quasiperiodic roughness: it is
satisfied by non-cst boundary.

Stationary ergodic case: (A') seems stronger than (A).

Conclusion: suggests that roughness is far from enhancing slip !
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But still:

One can argue that our isotropic scaling for the roughness is very
peculiar ...

To analyse more general scalings would be good.
Closer look at some physics papers:

» Rough (hydrophobic) surfaces generate bubbles in their
hollows:

» The fluid slips above hollows, sticks at bumps.

Suggestion: To consider a model with a flat boundary, alternating
zones of slip and no-slip, with arbitrary relative areas.
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Example: Q = T? x R, (3d model).
» Stokes in €2, with some forcing.
» Boundary T? x {0} divided in ~ £72 square cells of side &:
C; =c(k+ C), C=[0,1>, kel0,et—-1]>?
with patches

P; = ek + P), P°CC.
» B.C.is pure slip at U(C} \ Pf), no-slip at UPg,

Question : Averaged boundary condition as ¢ — 0 7

Key: Volume fraction of no-slip: ¢° = |P¢| € [0, 1].
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Two main results:
1. One for patches: broadly, P* € C smooth open set.
2. One for riblets: P =[0,1] x I, [¢ subinterval.

"Theorem for patches"

» If ¢ >> €2, the limit condition is Dirichlet.
> If ° << €2, the limit condition is pure slip.

> If¢f ~ g2, the limit condition is Navier.

"Theorem for riblets": C > 0 arbitrary.

> If ¢° >> exp(—C/e), the limit condition is Dirichlet.
> If ¢° << exp(—Ce), the limit condition is pure slip.
> If ¢° ~ exp(—C/¢), the limit condition is Navier.
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Remarks:

» Significant slip is possible. But the relative area of the no-slip
zone needs to be very small (unrealistic 7).

> The riblet geometry is less efficient in improving slip.
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Remarks:

» Significant slip is possible. But the relative area of the no-slip
zone needs to be very small (unrealistic 7).

> The riblet geometry is less efficient in improving slip.

Proof: More or less already done ! Think of the simpler problem:

A =0in Q 9 =1in U(C\P), u=0in UPE

Homogenization of the fractional Laplacian in domains with holes.

Allows to connect to the existing litterature [Cioranescu et al, 82],
[Allaire, 91], [Caffarelli-Mellet, 08].
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