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Introduction of the equations

We consider the Green-Naghdi equations,{
∂th + ∂xhu = 0,
∂thu + ∂xhu

2 + ∂x(gh2/2 + αh2ḧ) = 0.
(1)

where h is the water height, u is the horizontal speed and
α > 0.The material derivative is given by (̇) = ∂t() + u∂x().
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Some reminders about hyperbolic systems

Let us consider a one dimensional n-hyperbolic system of
conservation law

∂tU + ∂xF (U) = 0. (2)

where F is a function defined on an open subset Ω of Rn.

Definition
The system (2) is symmetrizable if there exists a change of variable
U 7→ V , a symmetric definite positive matrix A0(V ) and a
symmetric matrix A1(V ), such that the system is written under the
form

A0(V )∂tV + A1(V )∂xV = 0.

Definition
The system (2) admits an entropy in the sense of Lax if there exists
a strictly convex function E and a function P defined on Ω such
that

(∇UF (U))T ∇UE (U) = ∇UP(U).
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Some reminders about hyperbolic systems

Remark
System (2) admits an entropy in the sense of Lax i.e. it is such that

(∇UF (U))T ∇UE (U) = ∇UP(U),

iff the solution U of the system satisfies

∂tE (U) + ∂xP(U) = 0.

Proposition (Godunov 1961 )

All entropic hyperbolic systems are symmetrizable under any
variable.
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Some reminders about hyperbolic systems

This is due to the fact that all entropic hyperbolic systems own a
Godunov structure i.e. it is written under

∂t (∇QE
?(Q)) + ∂x

(
∇Q P̂(Q)

)
= 0,

where
E? = Q · U − E(U),

is the Legendre Transform of E for the change of variable

Q = ∇UE(U),

and
P̂(Q) = Q · F (U(Q))− P(U(Q)).
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Multidimensional generalization : The symmetric structure and
the entropy of the following hyperbolic system,

∂tU +
d∑

i=1

∂xiFi (U) = 0, (3)

are respectively defined by

A0(V )∂tV +
d∑

i=1

Ai (V )∂xiV = 0,

and
∇UE (U)∇UFi (U) = ∇UPi (U) ∀i ∈ {1, ..., d},

for a strictly convex function of U and some functions Pi .

Then, a similar proposition holds true.
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Generalization of the symmetrizability

Let us now consider the following general system

∂tU + ∂xF (U) = 0, (4)

where U ∈ C ([0,T );A) for some T > 0 and F is a differentiable
application acting on a functional space A (a subspace of L2(R)).

Definition
The system (4) is symmetrizable if there exists a change of variable
U 7→ V , a symmetric definite positive operator A0(V ) and a
symmetric operator A1(V ), such that the system is written under
the form

A0(V )∂tV + A1(V )∂xV = 0.
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Generalization of the symmetrizability

We have for hyperbolic systems

Godunov structure⇔ Entropy in the sense of Lax.

What we do here

function E 7→ functional H =

∫
R
E

gradient ∇ 7→ variational derivative δ.

Hessienne ∇2 7→ second variation δ2.

H? =

∫
R
U · δUH− E (U).

Godunov structure 7→ general Godunov structure.
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Generalization of the symmetrizability

Theorem (K. 2014)

Let us assume that there exists a functional H(U) =
∫
R E (U)

strictly convex on an open convex subset Ω of A such that
δ2UH(U)DUF (U) is symmetric. Then, (4) owns a general Godunov
structure i.e. the system is written under

∂t(δQH?(Q)) + ∂x (δQR(Q)) = 0, (5)

where
Q = δUH(U),

and R is a functional defined on δH(Ω).
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Generalization of the symmetrizability

Theorem (K. 2014)

Let us assume that (4) owns a general Godunov structure through
a strictly convex functional H of Ω. Then, the system is
symmetrizable under any change of unknown U 7→ V i.e. it is
equivalent to

A0(V )∂tV + A1(V )∂xV = 0.

Moreover, the expressions of the symmetric definite positive
operator A0(V ) and the symmetric one A1(V ) are given by

A0(V ) = (DVU)T δ2UH(U)DVU, (6)

and
A1(V ) = (DVU)T δ2UH(U)DUF (U)DVU. (7)
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Generalization of the symmetrizability

Corollary
The three following statements are equivalent :

1 System (4) owns a general Godunov structure through a
strictly convex functional H?.

2 There exists a strictly convex functional H such that the
operator δ2UH(U)DUF (U) is symmetric.

3 System (4) is symmetrizable under any change of unknown
U 7→ V of the form A0(V )∂tV + A1(V )∂xV = 0 where the
expressions of A0(V ) and A1(V ) are given by (6) and (7).

Remark
The system is symmetrizable only while the solution remains in the
domain of convexity of H. We say that the system is locally
symmetrizable on a particular solution U0 if the Hamiltonian H is
strictly convex on a neighborhood of U0.
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Interesting change of variable

It is based on the decomposition U = (U1,U2) of the unknown
if the following change of variable is well-defined.
It is given by the partial variational derivative of the strictly
convex functional H i.e. by

U 7→ V = (V1,V2),

such that
U1 = V1 and V2 = δU2H(U).

Advantage : The definite positive operator A0(V ) is bloc
diagonal.
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The link with the conservation law

Question : It is well-known that in the case of hyperbolic systems,
the Godunov structure and the existence of an entropy equality are
equivalent. Does such an equivalence hold true for the abstract
system (4) ?

Proposition (K. 2014)

Let us assume that (4) is a general Godunov system on an open
convex subset Ω of A. i.e. there exists a strictly convex functional
H =

∫
R E (U) defined on Ω such that, as long as U remains in Ω,

the system is written under

∂t(δQH?(Q)) + ∂x (δQR(Q)) = 0,

for Q = δUH(U) and a functional R(Q) =
∫
R R(Q) defined on

δUH(Ω). Then, the solution U satisfies∫
R
∂tE (U)+∂xN(U) dx = 0, with N(U) = Q(U)·F (U)−R(Q(U)).
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Differences with the hyperbolic case

Contrary to the case of hyperbolic systems, the reciprocal of the
proposition is false. This is due to∫

R
DUN(U)φ =

∫
R
δUH(U) · DUF (U)φ ∀φ ∈ A<∫

R
DUN(U)∂xU =

∫
R
δUH(U) · DUF (U)∂xU.

Weak symmetry : Moreover, the general Godunov structure of the
system does not lead to a conservation law but it leads to a
conserved quantity. This is due to the fact that the definition of the
generalized symmetry we chose is weak (based on the L2 scalar
product). Therefore, we can call it the weak symmetry.
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Multi-dimensional generalization

∂tU +
n∑

i=1

∂xiFi (U) = 0. (8)

The following conditions are equivalent
1 There exists a strictly convex functional H(U) =

∫
R E(U) such

that δ2
UH(U)DUFi (U) is symmetric for all i ∈ {1, ..., n}.

2 System (8) is a general Godunov system. i.e. it is equivalent to

∂t(δQH?(Q)) +
n∑

i=1

∂xi (δQRi (Q)) = 0,

for some functionals Ri (Q) =
∫
R Ri (Q) with i ∈ {1, ...n} and a

strictly convex functional H? .
3 System (8) is symmetrizable under any change of unknown

U 7→ V with

A0(V ) = (DVU)T δ2
UH(U)DVU, Ai (V ) = (DVU)T δ2

UH(U)DUFi (U)DVU.

17 / 42



Multi-dimensional generalization

∂tU +
n∑

i=1

∂xiFi (U) = 0. (8)

The following conditions are equivalent
1 There exists a strictly convex functional H(U) =

∫
R E(U) such

that δ2
UH(U)DUFi (U) is symmetric for all i ∈ {1, ..., n}.

2 System (8) is a general Godunov system. i.e. it is equivalent to

∂t(δQH?(Q)) +
n∑

i=1

∂xi (δQRi (Q)) = 0,

for some functionals Ri (Q) =
∫
R Ri (Q) with i ∈ {1, ...n} and a

strictly convex functional H? .
3 System (8) is symmetrizable under any change of unknown

U 7→ V with

A0(V ) = (DVU)T δ2
UH(U)DVU, Ai (V ) = (DVU)T δ2

UH(U)DUFi (U)DVU.

17 / 42



Application to the Green–Naghdi equations

Let us now consider again the Green-Naghdi equations,{
∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = 0.

(9)

and let us introduce the variable (Li, 2002)

m = Lh(u) = hu − α∂x(h3∂xu).

The system is equivalent to

∂tU + ∂xF (U) = 0,

where
U = (h,m),

F (U) =

(
hL−1

h (m)

mL−1
h (m)− 2αh3(∂xL−1

h (m))2 + g
2h

2 − g
2h

2
e

)
.
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Application to the Green–Naghdi equations

The Green-Naghdi equations is a particular case of the abstract
frame presented before, since F is a twice differentiable application
acting on

A = (Hs(R) + he)×Hs−1(R)

for all integer s ≥ 2 and all he > 0.

Remark
The space A is also the space of the local well-posedness of the
system (Li 2006, Israwi 2011, Lannes 2008).

After basic computations, we remark that the solution of the
system satisfies

∂tEhe (U) + ∂xPhe (U) = 0,

where
Ehe = gh(h − he)/2 + hu2/2 + αh3(ux)2/2,

and
Phe = u

(
Ehe + gh2/2 + αh2ḧ

)
.
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Application to the Green–Naghdi equations

Proposition (K. 2014)

The Green-Naghdi equation is locally symmetrizable on (he , 0).

Proof

We consider the energy integral Hhe =
∫
R Ehe , which is strictly convex on

(he , 0).

We remark that the system is a general Godunov system of the form

∂t (δQH?he (Q)) + ∂x (δQR(Q)) = 0,

where

Q = δUHhe (U) = (gh − ghe/2− u2/2− 3
2
αh2(ux)

2, u),

and

R(Q) =

∫
R
gu

(
h2 − h2

e

2

)
− αh3u(ux)

2.
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Here is the symmetric structure of the system under the physical
variable V = (h, u) :

A0(V ) =

(
g − 3αh(ux)2 0

0 Lh

)
,

and

A1(V ) =

(
gu − 3αhu(ux)2 gh − 3αh2(ux)2

gh − 3αh2(ux)2 hu + 2α∂x(h3ux)− αh3ux∂x − αu∂x(h3∂x())

)
.

Remark
A0(V ) is diagonal because V = (h, u) is obtained by the partial
variational derivative of Hhe with respect to m i.e

(h, u) = (h, δmHhe (U)).
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Application to the Green–Naghdi equations

The symmetric structure of the system under the variable
Q = (gh − ghe/2− u2/2− 3

2αh
2(ux)2, u) is given by :

A0(Q) =
1

g−3αh(ux )2
u+3αh2ux∂x
g−3αh(ux )2

u
g−3αh(ux )2

− 3α∂x
(

h2ux
g−3αh(ux )2

()

)
Lh +

(
u

g−3αh(ux )2

)(
u + 3αh2(ux )∂x

)
−3α∂x

(
h2ux

u()+3αh2ux∂x ()

g−3αh(ux )2

)



A1(Q) =
u

g−3αh(ux )2
h + u2+3αh2uux∂x

g−3αh(ux )2

h + u2
g−3αh(ux )2

− 3α∂x (
h2u(ux )

g−3αh(ux )2
()) 3hu + u3+3αh2u2ux∂x

g−3αh(ux )2
− α∂x

(
h3ux ()

)
− αu∂x

(
h3∂x ()

)
−3α∂x

(
h2u2ux +3αh4u(ux )2∂x ()

g−3αh(ux )2

)
 .
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Application to the Green–Naghdi equations

Remark
The general Godunov structure of the system implies the
conservation of the Hamiltonian Hhe over time.

Remark
A 2D generalization is possible.
A generalization to all constant solutions of the form (he , ue)
is possible.
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Global existence results
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Hyperbolic-Parabolic Systems by Kawashima–Shizuta

Theorem (Kawashima-Shizuta, 1986)

Let us consider a n-hyperbolic-parabolic system of the form

A0(U)∂tU + A1(U)∂xU = B∂2
xU, (10)

such that

Symmetrizability : A0(U) is a symmetric definite positive matrix, A1(V )
is a symmetric matrix.

Entropy dissipativity : B is a symmetric constant definite positive matrix
such that its kernel is invariant under A0(U).

Kawashima–Shizuta condition : There exists a real matrix K such that
KA0(Ue) is skew-symmetric and 1

2

(
KA1(Ue) + A1(Ue)K

T
)
+ B(Ue) is

definite positive for a constant solution Ue .

Then, the equilibrium Ue is asymptotically stable for the norm of the space
C([0,∞);Hs(R)) for all integer s ≥ 2.
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Assymptotic stability

Definition
A particular global solution Ue of an evolution system is called
asymptotically stable if there exists a neighborhood of Ue such that
for all initial data in this neighborhood, the solution of the system
exists for all time and converges to Ue while t →∞.
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Hyperbolic systems with friction

Theorem (Hanouzet–Natalini 2003, Yong 2004)

Let us consider a n system with a friction of the form

A0(U)∂tU + A1(U)∂xU = (0,Q(U)) , (11)

where U = (U1,U2) is a n component vector. Let us also consider a constant
vector Ue = (U1

e ,U
2
e ) such that Q(Ue) = 0. We also assume that

Symmetrizability : A0(U) is a symmetric definite positive matrix, A1(V )
is a symmetric matrix.

Entropy dissipativity : There exists a definite positive matrix B(U) such
that Q(U) = −B(U)(U2 − U2

e ).

Kawashima–Shizuta condition : There exists a real matrix K such that
KA0(Ue) is skew-symmetric and

1
2

(
KA1(Ue) + A1(Ue)K

T
)
+

(
0 0
0 B(Ue)

)
is definite positive.

Then, the equilibrium Ue is asymptotically stable for the norm
C([0,∞);Hs(R)).
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Sketch of the proof for hyperbolic case

The proof is based on two class of estimates :
The first category is obtained by taking the scalar product of
the sth derivative of the system by the sth derivative of the
solution using the symmetric structure and the entropy
dissipativity.

The second category is obtained by acting the operator K∂s−1
x

on the system before taking the scalar product by the sth

derivative of the solution.
Combining these two estimate we can find δ > 0 such that for all
initial data in the δ-neighborhood of Ue , the solution belongs to the
neighborhood far all time.
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Question

Is it possible to prove the global existence of the solution of the
Green-Naghdi equation with the µ-viscosity by generalizing the
techniques already used for hyperbolic systems ?{

∂th + ∂xhu = 0,
∂thu + ∂xhu

2 + ∂x(gh2/2 + αh2ḧ) = µ∂x(h∂xu).
(12)

The local well-posedness space is for

Xs(R) = (Hs(R) + he)×Hs+1(R),

for some integer s ≥ 2.
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Difficulties :
A0(V ) and A1(V ) are not matrix but operators of order 2.

no operator generalization of the Kawashima-Shizuta condition
is available for the Green-Naghdi equation.
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Asymptotic stability of the equilibriums of the GN equations
with viscosity

Theorem (K. 2015)

Let us consider the equilibrium Ve = (he , ue) of (12) and s̄ ≥ 2 an
integer. Then, there exists δ > 0 such that for all initial data
V0 = (h0, u0) ∈ Bs̄(Ve , δ) , the solution V exists for all time and
converges asymptotically to Ve .
In other words, every constant solution Ve = (he , ue) of (12) is
asymptotically stable.

Notation : Bs̄(Ve , δ) represents the δ-neighborhood for the norm
Xs̄ of the equilibrium Ve .

In fact, we just need to prove the
theorem for equilibriums of the form

Ve = (he , 0).

This is due to the existence of a special invariance for the system.
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In other words, every constant solution Ve = (he , ue) of (12) is
asymptotically stable.

Notation : Bs̄(Ve , δ) represents the δ-neighborhood for the norm
Xs̄ of the equilibrium Ve . In fact, we just need to prove the
theorem for equilibriums of the form

Ve = (he , 0).

This is due to the existence of a special invariance for the system.
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Asymptotic stability of the equilibriums of the GN equations
with viscosity

Remark (Li, Bagderina, Chupakhin)

The operator v = t∂x + ∂u is a infinitesimal generator of a
symmetry group of (12) . That is to say that

Vβ = (h(x − βt, t), u(x − βt, t) + β)

is also a solution of (12) for all solution V = (h, u) and all β ∈ R.
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The key of the proof for the stability of equilibriums is the following
proposition :

Proposition (K. 2015)

Assume also that there exists T̄ > 0 such that the unique local
solution V satisfies V (T ) ∈ Bs̄(Ve , δ) for all 0 ≤ T < T̄ . Then, we
have for all T ∈ [0, T̄ ),

(1−Θ{he ,α}(δ)) ‖ V (T )− Ve ‖2Xs̄ +C{he ,µ}(δ)

∫ T

0
‖ ux ‖2Hs̄≤

C{he ,α}(δ) ‖ V (0)− Ve ‖2Xs̄ +Θ{he ,µ,α}(δ)

∫ T

0
‖ ux ‖2Hs̄

Notation : Symbol CS(δ) stands for a function of δ, defined by the
elements of the set S , which converges to a limit strictly different
from zero while δ goes to 0.
Symbol ΘS(δ) stands for a function, defined by the elements of the
set S , which converges to zero while δ goes to 0.
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Sketch of the proof of Proposition

We use the symmetric structure previously presented for the
physical variable Ve = (he , ue).

Primary estimates : The 0th order estimate is a consequence of
the local quadraticity for the norm X0 of H around the equilibrium
as well as its dissipativity

Hhe (h(t), u(t))−Hhe (h(0), u(0)) = −µ
∫ t

0

∫
R
h(ux)2 ≤ 0.

This leads us to

‖ V (T )−Ve ‖2X0 +C{he}(δ)

∫ T

0
‖ ux ‖2L2≤ C{he}(δ) ‖ V (0)−Ve ‖2X0 .

The higher order estimates are the results of the time and space
integral of the scalar product of the sth derivative (for 1 ≤ s ≤ s̄)
of the symmetric equation and the sth derivative of the solution.
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Sketch of the proof of Proposition

This gives us

‖ V (T )− Ve ‖2Xs̄ +C{he ,µ}(δ)

∫ T

0
‖ ux ‖2Hs̄≤

C{he ,α}(δ) ‖ V (0)− Ve ‖2Xs̄ +Θ{he ,µ}(δ)

∫ T

0
‖ Vx ‖2Xs̄−1 .

Estimate on
∫ T
0 ‖ hx ‖

2
Xs̄−1 : We introduce the hollow matrix

K (Ve) =

(
0 1
−he

g 0

)
.

We remark that

K (Ve)A1(Ve) +

(
0 0
0 h2

e + 1

)
,

is symmetric definite positive matrix even though K (Ve)A0(Ve) is
not skew-symmetric. Therefore, we extract a convenient part from
K (Ve)A0(Ve) we know a lower bound of.
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Sketch of the proof of Proposition

Therefore, acting K (Ve)∂s−1
x , for 1 ≤ s ≤ s̄, on the symmetric

equation and taking the scalar product with the sth derivative of
the solution, we obtain∫ T

0
‖ hx ‖2Hs̄−1≤ C{he ,α}(δ)

(
‖ u(T ) ‖2Hs̄+1 + ‖ ∂xh(T ) ‖2Hs̄−1

)
+ C{he ,µ}(δ)

∫ T

0
‖ ux ‖2Hs̄ +C{he ,α}(δ)

(
‖ u(0) ‖2Hs̄+1

)
+ C{he ,α}(δ)

(
‖ ∂xh(0) ‖2Hs̄−1

)
.

Remark
The coercivity of A0(Ve) plays a very important role in the proof.
The definite positivity is not sufficient.
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The stability of Ve is just a consequence of Proposition.

We have
the following corollary for the asymptotic stability

Corollary

(Asymptotic stability of equilibrium solutions) Let us s̄ ≥ 2 be
an integer and consider the equilibrium Ve = (he , 0) of (12) .
Then, there exists δ > 0 such that for all initial data V0 = (h0, u0)
in Bs̄(Ve , δ) , the global solution V (x , t) in Xs̄(R) of (12)
converges asymptotically to Ve . In other words, lim

t→∞
V (x , t) = Ve

for all x ∈ R.
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Proof of Corollary

We then take the x derivative of the equation, its time integral on
[t1, t2] and consider the H1 × L2 norm :

‖ Ux(t2)− Ux(t1) ‖H1×L2=‖
∫ t2

t1

∂xxF (U) +

(
0

µ∂2
x (hux)

)
‖H1×L2 .

Hence,

‖ Ux(t2)− Ux(t1) ‖H1×L2≤

|t2 − t1|
(

sup
t1≤t≤t2

‖ ∂xxF (U) ‖H1×L2 +µ sup
t1≤t≤t2

‖ ∂2
x (hux) ‖H1×L2

)
.

The proposition together with the continuity of F gives us a C̃ > 0
such that we have for all t1, t2 positive,

| ‖ Ux(t1) ‖H1×L2 − ‖ Ux(t2) ‖H1×L2 | ≤‖ Ux(t2)− Ux(t1) ‖H1×L2

≤ C̃ |t2 − t1|.
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Proof of Corollary

Hence,
t 7→‖ Ux(t) ‖H1×L2 is Lipschitz continuous.

It is also L2 ([0,∞)) by the proposition.
Therefore, ‖ Ux(t) ‖H1×L2 converges to 0 at the limit t →∞, so
does ‖ Vx(t) ‖X1 . Then,

lim
t→∞

‖ Vx(t) ‖L∞×L∞= 0.
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Conclusion and perspectives

A notion of symmetry for the Green–Naghdi equations has been defined.

This structure leads to the asymptotic stability of the equilibriums of the
system with viscosity.

Let us however mention that the used technic does not lead to a similar
result for the system with a linear friction contrary to the case of
hyperbolic systems.

Let us also mention that the Saint-Venant system with a quadratic
friction does not fit to the work frame of Yong or Hanouzet-Natalini.

We may also be able to give a convergence speed to the equilibriums as
Kawashima did for hyperbolic systems (1986).

We may be able to get a similar result for the general system of the form
∂tU + ∂XF (U) = Q(U) under right conditions. Especially, the 2-D
Green–Naghdi is covered in this case.
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Thank you for your attention !
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