Gravity driven flows on planets: process diversity and formation conditions

Effect of gravity?

A variety of fluids?

The special interest of Mars

4 Gy ago?

Today 6 hPa From -130°C to +10°C

Approche

Morphologie – Conditions physiques

HRSC view of Hrad Vallis

20 km

Flow direction

Flooding in Sahara

1200 in

Meandering inverted channels

Detection of phyllosilicates

Mars Express OMEGA

Hottah, sol 34

Williams et al., Science, 2013

Earth

Layering and imbrication of pebbles

Williams et al., Science, 2013

NASA/JPL-Caltech/MSSS

Conditions on current Mars

Recent gullies on Mars

Recent gullies discovered by the MOC camera of MGS

Periglacial polygons

MOC images

- Patterns of dark or bright lines are the result of dust devil activity
- They usually remove dust from darker surface

Chronology of water-related landforms and sediments

Flows on Mars: Are they wet or not?

All landforms have been interpreted to be wet once....

Usuaully it is more popular to propose wet processes...

Recent gullies on Mars

Recent gullies discovered by the MOC camera of MGS

Recent gullies

Malin and Edgett (Science, 2000): Seepage of water from aquifers

More recent consensus: Gullies formed by surface processes (near surface ice/snowmelt due to insolation) (Costard et al, 2002, Christensen, 2003, etc.)

Gullies on isolated hills

Recent gullies: Observations

Gullies are episodic : They do not form in simultaneously

The second event crosses the first channel without connecting to it

Recent gullies: Slopes

Most of sinuous gullies occur on slope 10 to 25° steep (Kreslavsky, 2008, Reiss et al., 2009, Mangold et al., 2010)

Recent gullies: Terrestrial analogues

Izoard Pass (2400 m) South French Alps

2 m high levees / channel width of 12 m / 15° steep slope

Recent gullies: Velocities

Low velocity, high viscosity

Mangold et al., 2003

Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties

N. Mangold,¹ A. Mangeney,² V. Migeon,¹ V. Ansan,¹ A. Lucas,² D. Baratoux,³ and F. Bouchut⁴

Sinuous channel: Usually not observed for granular flows

Mangold et al., 2010

	· ·	-	-
Profile	Yield Strength, K (Pa)	Velocity, $V (m s^{-1})$	Viscosity, μ (Pa s)
А	2200	_	_
В	<120	_	_
С	1800	2.0	460
D	840	1.9	1040
Е	1900	1.1	290
F	1100	1.7	450
G	840	3.3	95
Н	380	2.6	40

 Table 1. Physical Properties of Gullies Using Profiles in Figure 13

Recent gullies: Geographic distribution

Distribution latitude > 30 N and 30 S No equatorial flows

Presence in latitude range where many ice related features exist

Examples on the moon:

Dry granular flows can explain these flows Very different from the Martian gullies No large levees, no deep channels, no sinuosities

Recent and current landforms: Gullies

<= Currenlty forming gullies on dunes (Dundas et al., 2012)

Activity in gullies over bedrock (Dundas et al., 2012)

Usually seen at defrosting => Related to CO2 ice does not mean these are CO2 ice flows)

May not explain

all the erosion

Slope streaks: Dark or bright streaks associated to hillslopes

Slope streaks in Arabia Terra

Slope streaks: Dark or bright streaks associated to hillslopes

Slope streaks are correlated with low thermal inertia regions (means dust rich regions)

The origin of these features is debated:

* Pure dry mass wasting hypotheses (Sullivan, JGR, 2001) Analogue to snow avalanches

* Downslope water flow (Motazedian, LPSC, 2003, Miyamoto et al., 2004)

But equatorial features occur where liquid water is strongly instable

• Slope streaks: Dark or bright streaks associated to hillslopes

What is certain: They are active currently at surface

New ones have been discovered on MOC (Malin and Edgett, JGR, 2000)

Current formation rate: 7% new streaks/per Martian year/per existing streaks (Aharonson, JGR, 2003)

Baratoux et al., 2006

Rad May 430

Red=small craters Without craters means dust covered terrain

=>Streaks are related to dust blankets

Related to wind directions Because accumulation in the lee of wind +triggering when unstability is created

20 m

Snow avalanches on Eartyh...

All slopes are < 20°!

Often < 10°!!

Tentative de simulation (Thèse A. Lucas)

Epaisseur < 5 cm OK Mais pas de divisions en deux parties. Et surtout coefficients de frictions artificiellement faibles: 10-12°

Pas d'explication physique à ces très faibles frictions

Recurrent Slope Linae (RSL)

Recent and current landforms: Recurrent Slope Linae (RSL)

Mc Ewen et al., Science, 2011: Possible volatile rich flows

Slope is 40°, suggest dry granular flows But the flows form seasonally

Mc Ewen et al., Science, 2011: Possible volatile rich flows

Table 1. Slope Streaks vs. TSL				
Attribute	Slope streaks	TSL		
Slope albedo	High (>0.25)	Low (<0.2)		
Contrast	~10% darker	~40% darker		
Dust index*	High (e<0.95)	Low (e>0.96)		
Thermal inertia	Low (<100)	180-340 <i>(12)</i>		
Width	Up to 200 m	Up to 5 m		
Slope aspect preferences	Varies with regional wind flow (14)	Equator-facing in middle latitudes		
Latitudes; Longitudes	Corresponds to dust distribution	10°S to 48°S; all longitudes		
Formation L _s	All seasons (31)	L _s 260-20		
Fading timescale	Years to decades	Months		
Associated with rocks	No	Yes		
Associated with channels	No	Yes		
Abundance on a slope	Up to tens	Up to hundreds		
Regional mineralogy	Mars dust	Variable		
Formation events	1 event per streak or streaks	Incremental growth		

* 1350-1400 cm⁻¹ emissivity (see SOM)

Metastable ice melting?

Avalanche granular, ice?,

The giant landslides in Valles Marineris

Brunetti et al., 2014

Brunetti et al., 2014

Mars

Earth. Alaska

Thèse A. Lucas

Velocities can reach 200 km/h

Quantin et al., 2004: Ages of landslides are variable From 3 Gy to less than 100 Ma

No obvious link with climatic variations

Triggering mechanisms Likely impact ejecta

Possibly tectonism

Brunetti et al., 2014

Simulation

DEM

Lucas et al., 2010

Long run out.

Possible simulation works only with apparent friction angles at 9.8°.

No physical explanation to the low friction, but not a usual process compared to Earth (very large landslides).

Water is possible but not necessary.

ARTICLE

Received 6 Aug 2013 | Accepted 10 Feb 2014 | Published 4 Mar 2014

DOI: 10.1038/ncomms4417

Frictional velocity-weakening in landslides on Earth and on other planetary bodies

Antoine Lucas ^1,2, † , Anne Mangeney ^{1,3} & Jean Paul Ampuero²

$$u_{\rm eff} = \tan \delta = \tan \theta + \frac{H_0}{\Delta L}.$$
 (1)

The analytical solution also shows that the Heim's ratio is

$$\frac{H}{\Delta L'} = \tan \theta + \frac{1}{\cos^2 \theta \left(\frac{2k}{\tan \delta - \tan \theta} + \frac{L_0}{H_0} - \tan \theta\right)}, \quad (2)$$

where L_0/H_0 is the inverse of the initial aspect ratio and k an empirical coefficient (for example, with k=0.5, the results of granular collapse experiments are quantitatively reproduced^{4,20}).

Effect of gravity on granular flows?

lapeteus

Callisto

Krohn et al., 2014

Crater on Vesta/ Granular flows

Interpreted by some as wet flows....!

Zero g experiences

Kleinhans et al., JGR-Planets, 2011

Figure 8. Time-averaged angle, static angle of repose and dynamic angle of repose for each sediment. Individual observations indicated by triangles. Values plotted at 0.98 g are control measurements in the flight at 1 g and values plotted at 1.02 g are control measurements on the ground at 1 g (uncorrected for camera and setup angle). Maximum is calculated as 90% percentile from static angles (see Figure 6) and minimum is calculated as 10% percentile from dynamic angles.

« Our data suggest that asteroids with g \approx 0.02 could have static slope angles of repose up to 50° and dynamic angles of repose less than 20° for loose angular granular material."