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Introduction 

• Landslides are unique unpredictable events 

 

• Project goal : use seismic signals and numerical modelling 

to infer and constrain parameters  

 

• Granular material are treated as nonlinear viscoplastic fluid 
Requires specific numerical tools to deal with 

non linearity and non differentiability 

• The column collapse is a highly transient problem with 

unitary aspect ratio (at the beginning of the collapse) 

  Navier-Stokes equation to capture all the physics 
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Mechanical model 

• Navier-Stokes for momentum equilibrium 

 

 

• How to describe the mechanical behavior of a 

granular material? 
• Basic approach : plasticity 

=> Describe a flow/no flow behavior through a plasticity criterion : 

 

The block on the ramp : friction coefficient = tan �  

The block starts to slide when   �� sin ߠ = tan � �� cos ሺߠሻ 
   i.e. when � =  ߠ
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Mechanical model 

• For a granular material the internal friction angle is related to 

the maximal angle of a pile : 

 

 

 

The criterion of stability of a granular material is a frictional criterion :  

 - under a given threshold the medium is rigid 

 - over it, it deforms and the shear stress is given by  

   where ߤ = tan �  is the friction coefficient 
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Infinite strain over a given  

stress : rupture 

Perfect plasticity : 
Shear stress 

Normal stress 



Mechanical model 
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For the granular material we are still lacking of a « flow 

law » describing the deformation  

 

• A constitutive law expresses the deviatoric stress as a 

function the strain rate. Two assumptions are made here : 

1) Colinerarity of the deviatoric stress tensor and the strain rate 

tensor :  �||�|| = �||�|| 
2) Incompressibility : �� � = Ͳ 

We thus obtain : � = ࣅ with � ߣ = |�| /| ܁ | 
The simple 1D perfect plasticity criterion is generalized in 2D with a 

law of the form  ||܁|| =  ሺ�ሻߢ
Recall : � = � − ��� 

             � = ଵଶ ሺ�� +  ሻ܂��



Mechanical model 

• Drucker-Prager plasticity criterion 

 

 

 

• If we invert the constitutive law using the plasticity criterion we finally 
obtain (setting cohesion to 0) :  � =  ||�||� �ߤ

 

 This is a plastic flow law. Similarly to a viscous fluid law, it expresses 
the deviatoric stresses as a function of the strain rates. 

 The term  ߤ�/||�|| can be seen as an effective viscosity of the 

material depending on shear rate and pressure 
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Cohesion (set to 0 here) Internal friction angle 



Mechanical model 
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• The ߤሺ�ሻ rheology : instead of considering a constant 

friction angle, the idea is to derive a phenomenological 

law describing a spatial variability of ߤ ∶ � =  ||�||� �ሺ�ሻߤ
• We introduce for that the inertial number �1,2: 

 
(It can be seen as a ratio between the microscopic 

particle rearrangement timescale 

and macroscopic strain rate timescale                  )  

Grain diameter Pressure 

Grain density 

1 : S.B. Savage, The mechanics of rapid granular flows, Adv. Appl. Mech., 1984 
2 : C. Ancey & al, Framework for concentrated granular suspensions in steady simple shear flow, J. Rheol., 1999 



Mechanical model 

• The          rheology3 is written : 

 

 

 

• If we develop the constitutive law using the 

definition of         and   : � = � �||�|| ሺߤ� + �2−���0√ሺ� �ሻ ||�||� +ଵ)  
   

9 

 internal friction  

 angle at low  

 internal friction  

 angle at high   

3: P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows, Nature, 2006 



Mechanical model 
which is finally written (setting � = �√�) : � = ��ߤ �||�||  + ሺߤଶ − ||�||�ሻ�ߤ + �଴� √p� 

We retrieve the original plastic term  

         plus an additional viscous term introducing a viscosity  ߟ = ͳʹ ሺߤଶ − ||�||�ሻ�ߤ + �଴� √p 

The model is now describing a viscoplastic fluid flow.  

• 2 viscous flow laws are then considered : 
• Constant viscosity            Drucker-Prager fluid 

• Pressure-dependent  viscosity                                      rheology 
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Experimental setup4,5 
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Initial situation : the granular column lies behind a door 

Volume fraction               , Aspect ratio   

The door lifts releasing the granular column on the channel 

Bed roughness simulated with  

a single layer of glued glass beads 

Boundary conditions  

- Left wall and bed : Coulomb friction with coeff    

 

- Uplifting door : free slip 
 

Surface : free surface moving in time through a transport equation 

4 : A. Mangeney & al., Erosion and mobility in granular collapse over sloping beds, JGR – Earth 2010 
5 : I. Ionescu & al, Viscoplastic modeling of granular column collapse, JNNFM, 2015 



Accounting for lateral friction 

• We consider a 3D domain 

  with a solution constant in transverse direction 

• The boundary term                          is equal to 

 

 

 

 

where                                          and  

 

• The rest of the VF is simply multiplied by the width  
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Former boundary term New « volumic » boundary term 

Normal stress Tangential stress 



Accounting for lateral friction 

• The tangential stress is given by a Coulomb friction law of 

the form : 

 

 

• On the lateral faces, the normal stress        is in the 

transverse direction    thus equal to the 3D diagonal term 

of the stress tensor  

 

• From both 2D and 3D incompressibility, we naturally 

obtain :  
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Accounting for lateral friction 

• The Coulomb friction law leads to write the « volumic » 

boundary term as : 

 

 

 

 

 

• If we divide the whole VF by     , we retrieve the former VF 

plus the extra term : 
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         = 0 because no flux  

    in the transverse direction 



Thickness profile results 

 

• We plot thereafter computed and observed thickness 

profiles at various times during the collapse for different 

slopes (10°,19°,22°) 

 

 

• The results obtained with          rheology are compared 

with the constant viscosity model 
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16 
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Comparison with constant viscosity : � = ૚૙°  

t=0.06s t=0.12s 

t=0.36s 
t=1.32s 

Results do not differ  

for higher slopes 

Colored surface : ࣆ �  

Mesh : constant � 



17 Thickness profile results : � = ૚૙°  

Colored surface : ࣆ �  with lateral friction 

Mesh :  ࣆ �  without lateral friction 



18 Thickness profile results : � = ૚�°  

Velocity norm in logarithmic scale 

Colored surface : ࣆ �        

with lateral friction 

Mesh :  ࣆ �  without 
lateral friction 



19 Thickness profile results : � = 22°  

Propagation is not over! 

Velocity norm in logarithmic scale 

Colored surface : ࣆ �  with lateral friction 

Mesh :  ࣆ �  without lateral friction 



Summary 

• The model and method reproduce quantitatively the flow dynamics 
• The extent of the deposit is very accurate along the collapse at small to 

intermediate slopes. At higher slopes, the lateral friction reveals to be 
necessary for the deposit to stop soon enough 

• The solid-fluid transition is sharply determined 

       « moves down » too quickly producing a mass loss on the upper left 
corner without the lateral friction 

       the dynamic shape of the deposit is significantly improved with the lateral 
friction 

 

• The rheology           has little effect on the flow dynamics 

(even where I  is high) while being more computationaly extensive.  

 

• The dilatancy phenomena on data is strong at the beginning and the 
incompressible model (obviously) fails to reproduce it 
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Evolution of front velocities � = ͳͲ° 21 



Evolution of front velocities � = ͳ9° 22 



Evolution of front velocities � = ʹʹ° 23 



Summary 

• The front propagation is quite well reproduced with both 

rheologies (and very little differences between them) 

 

• The decreasing of the velocity after the maximum is slower and 

less sharp in the numerical simulation. The lateral friction term 
induces a faster decreasing of the velocity in the deceleration 
phase. 

 

• The viscoplastic behavior introduced through ߤሺ�ሻ rheology is 
crucial but the spatial variability of the viscosity does not really 
affect the flow 
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Perspectives 
• The static-flowing transition quickly varies in the acceleration 

phase : the use of an adaptive time step could help to provide 

a better agreement with experimental data at the beginning 

 

• The use automatic mesh refinement could help to better 

capture the static-flowing transition 

 

• The dilatancy phenomena of the material is strong at the 

beginning (up to 5%) and should be considered in the model 

(e.g. dilatant Drucker-Prager model) 

 

• The role of the        rheology for this highly transient test case 

remains unclear and should be investigated e.g. on a 

stationnary uniform flow 
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Algorithmique 
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Constitutive equation 

Frictional problem 

Same structure          decomposition-coordination (augmented Lagrangian) formulation 
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Algorithmique 
Time discretization  
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Algorithmique 
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