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Direct steam generation | Solar thermal power plant
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Direct steam generation | Fresnel collector
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Direct steam generation | Two-phase flow

Generator

Cooling
tower

Solar collector Pump Pump

Liquid and steam phase in absorber tubes

Exchange of mass, momentum and energy across the phases

Interaction of the phases at the wall

Network coupling
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How to model two—phase flow?

r ‘Phase 1

Fluid k, that occupies the observed domain, is described with
Navier-Stokes equations: Continuity, momentum and total energy

Plenty of models in the literature!
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How to model two—phase flow?

r ‘Phase 1

Model development

e Dimension reduction
o Averaging of the Navier-Stokes equations

e Source terms

Density
Velocity
Energy
Pressure

e Quantities separate, mixture or equal
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How to model two—phase flow?

r ‘Phase 1

Model development

e Dimension reduction
— Quasi-1D flow in a tube, Stewart and Wendroff [1]

o Averaging of the Navier-Stokes equations

e Source terms

Density
Velocity
Energy
Pressure

e Quantities separate, mixture or equal
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How to model two-phase flow?

k-
‘ °
Phase 1

Model development

e Dimension reduction
— Quasi-1D flow in a tube, Stewart and Wendroff [1]

o Averaging of the Navier-Stokes equations
— Introduction of void fractions @ Drew and Passman [2]
— Baer-Nunziato type [3]

e Source terms

Density
Velocity
Energy
Pressure

o Quantities separate, mixture or equal
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How to model two-phase flow?

k-
‘ °
Phase 1

Model development

e Dimension reduction
— Quasi-1D flow in a tube, Stewart and Wendroff [1]

o Averaging of the Navier-Stokes equations
— Introduction of void fractions @ Drew and Passman [2]
— Baer-Nunziato type [3]

« Source terms: Replace viscous and diffusive terms, RELAP [4]
—  Use empirical laws dependent on local flow pattern

Density
Velocity
Energy
Pressure

e Quantities separate, mixture or equal
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How to model two-phase flow?

‘e ®
‘ °
Phase 1

Model development

e Dimension reduction
— Quasi-1D flow in a tube, Stewart and Wendroff [1]

o Averaging of the Navier-Stokes equations
— Introduction of void fractions @ Drew and Passman [2]
— Baer-Nunziato type [3]

« Source terms: Replace viscous and diffusive terms, RELAP [4]
—  Use empirical laws dependent on local flow pattern

Density
Velocity
Energy
Pressure

e Quantities separate, mixture or equal
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Two-phase flow model
The system is in non-conservative form

Oru + Oxf(u) + B(u) Oxu = s(u),

Og 0
Qepe QypeVvye
QupeVe ae(pevi + pe)
u= | aepeEyp |, F(u) = | culpeEr+ po)ve
“ele QgPgVeg
YgPgVe ag(pgvg + Pe)
agngg ag(ngg + pg)Vg
v 0000O0O0O [/ pi
0O 00O0O0OO0DO —T;
pp 0 0 0 0 0O —F — vl
Bluy=| pvi 0 0 0 0 0 Of, s(u)=|—veFi+ G~ Eql;
0O 00O0O0OO0O r
-pi 00 0 0 0O F + vl
-pv; 00 0 0 0O vgFi+ Qig + Eigl
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Two-phase flow model
The system is in non-conservative form

Oru + Oxf(u) + B(u) Oxu = s(u),

p VA AN / O
Model properties peve
® Source terms and interphase g(ngE + pr)
quantities peEr + po)ve
@ Conservation of mass, momentum agpgvg
and energy at the interface :(Pgvg + Pe)
© Equation of state pgEg + pg)vg
— How to describe pressure p ? T/ pi
© Well-posedness of the model -l
— Hyperbolicity —F —vl;
o Entropy inequality s(u) = | —veFi+ Qip — Bl
— Consistent with 2nd i
law of thermodynamics Fi+ vl
VgFi + Qig + Eigri

J
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Two-phase flow model | @ Source terms

v 0 0O0O0O0DO [/ pi
0O 0 0O0O0OO0OTPO —T;
pp 0 0 00 0O —F — vl
Bluy=|[ pv 00 0 0 0 0], s(u)=|-vFi+Qq—Eq
0O 0 0O0O0OO0OTO I
- 00 0000 F + vl
—-pvi 00 0 0 OO VeFi+ Qg + Ei gl
e Interphase quantities: I, vi, pi, Eiy, Eig, pi = 777

o Flow regimes for friction F;:

=,

| Tube wall dry |

e Models for heat transfer Qi¢, Qi,:
Convection, Condensation, Nucleate & Film boiling
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Two-phase flow model | @ Conservation at interface

[i/ pi
T
—Fi — vl
s(u) = | —veFi + Qi — Bl
li
Fi+ vl
VgFi + Qig + Eigri

Heat conduction limited model

1
= E,_E. (Fi(Vg —ve)+ Qe+ Qig)

RELAP [4].
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Two-phase flow model | 3 Equation of state

0
CQepeVe
a(pevi + pe)
f(u) = | aulpeEe+ pe)ve
QgPgVg
ag(pg Vg2 + pg)
ag(pgEg + Pg)Vg

Describe p by two state parameter

pe = p(pe, ue), pg = p(pg, Ug)

with density p and specific inner energy u.
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Two-phase flow model | @ Hyperbolicity

Rewrite system in terms of primitive quantities

Orw + M(w)o,w = §(w)
Eigenvalues
-
A= (Vla Ve, Ve + wy, Ve — Wy, Vg, Vg+Wg, Vg_Wg)

with speed of sound w.
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Two-phase flow model | @ Hyperbolicity
Rewrite system in terms of primitive quantities
ow + M(w)o,w = §(w)
Eigenvalues

T
A= (Vla Ve, Ve + wy, Ve — Wy, Ve, Vg+Wg, Vg_Wg)

with speed of sound w. Eigenvectors form a basis of R’ as soon as
the non-resonance condition is fulfilled Coquel, Hérard, Saleh,

and Seguin [5] :

viZFvitw, and v # v, = w,.
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Two-phase flow model | @ Hyperbolicity

Rewrite system in terms of primitive quantities

Orw + M(w)o,w = §(w)
Eigenvalues

T
/\:(Vi, Ve, Vet We, Ve — W, Vg, Vgt W, Vg*Wg)

with speed of sound w. Eigenvectors form a basis of R’ as soon as
the non-resonance condition is fulfilled Coquel, Hérard, Saleh,
and Seguin [5] :

viZFvitw, and v # v, = w,.

Gallouét, Hérard, and Seguin [6] choose v; as convex combination
between vy and v,:

vi:=pBve+(1—B)vy with Se][0,1]

Non-resonance condition will always be fulfilled
— M is diagonalisable — quasilinear system is hyperbolic.
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Two-phase flow model | ® Entropy-entropy flux pair
Closed quasilinear form:  0;u + A(u) - dxu = s(u).
Find entropy function n(u) and entropy flux ¢ (u), such that

Den(u) + D) < 0
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Two-phase flow model | ® Entropy-entropy flux pair
Closed quasilinear form:  0;u + A(u) - dxu = s(u).
Find entropy function n(u) and entropy flux ¥)(u), such that

!
9en(u) + Oxtp(u) <0
with
o Convex entropy (decreasing behaviour):
n"(u) >0
® Compatibility condition of Tadmor [8]:
Outh(u)" = Du(w)T Au)
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Two-phase flow model | ® Entropy-entropy flux pair
Closed quasilinear form:  0;u + A(u) - dxu = s(u).
Find entropy function n(u) and entropy flux ¥)(u), such that
Den(u) + 0,1(u) < 0
with
o Convex entropy (decreasing behaviour):

1" (u) >0

® Compatibility condition of Tadmor [8]:
Outh(u)" = Bun(u)" A(u)

© Entropy production condition:

Ou + A(u) - Ou = s(u)
& Oyn(u)T du + 9un(u)" A(u) - du = 9un(u)’ s(u) |
& Oen(u) + dxp(u) = 9un(u)'s(u) <0
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Two-phase flow model | ® Entropy-entropy flux pair (1)
Choose mixture of physical entropy s; and s,:
n(u) = —(arpese + agpgsg) and Y(u) = —(cupeseve + g pgsg vg)
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Two-phase flow model | ® Entropy-entropy flux pair (1)
Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)
o Convexity of n(u):

Follow proof of Coquel, Hérard, Saleh, and Seguin [5],
using results of Godlewski and Raviart [7].
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Two-phase flow model | ® Entropy-entropy flux pair (2)
Choose mixture of physical entropy s, and s,:
n(u) = —(awpese + agpgsg) and p(u) = —(aupeseve + agpgsg vg)

@ Compatibility condition 9,1(u)T = 9un(u)T - A(u):

Peve _ PeVe peve _ PsVs _ (pe=p)(ve=w) | (Pg—p)(vg—1)
TZ Tg Tg Tg Tg Tg

p 2

lJruz—%vz p—+u[—lvg
" o Lo Z¥ Py 2
° T, 7% Til

2 2

2

0 Ve

T, — St e =

To | i 7

_ Y = _

Ty Ty

Pg 1.2 )

= tug—3 Pe _1,2
v. . Pg ‘" 2"% by U3
b Tg Ve T,

% 2

Tg 3 - — Sg

_ e Ve

Ty T
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Two-phase flow model | ® Entropy-entropy flux pair (2)
Choose mixture of physical entropy s, and s,:
n(u) = —(awpese + agpgsg) and p(u) = —(aupeseve + agpgsg vg)

@ Compatibility condition 9,1 (u)” = Oun(u)™ - A(u):

Peve _ PgVg Peve — PgVe (Pit*P'\)(VZ*Vi) + (ngpi)(‘/gfvi)
Ty Tg Ty Ty Ty Tg
P 1,2
pg =5 Hetu—3vi
Ve S R
2 2
v
2L Ve
s A
Ty 2 i Se
72 EX v
TZ _7‘7Z
Pg _ 1.2 Pg 1.2
v . e BT 2% s 7873
(3 Ty Ve — T
2 2
v
g Ve
& _ g g _
Tg g iz Sg
_ & Vg
Tg _Tig

Interphasic velocity [Hyperbolicity]

vi=pv,+ (1 —pB)vy with g €0,1]
Interphasic pressure Gallouét, Hérard, and Seguin [6]
pi:i=pc+(1—=7)pg with ~€][0,1]
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Two-phase flow model | ® Entropy-entropy flux pair (2)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

@ Compatibility condition 9,1 (u)” = Oun(u)™ - A(u):

Peve _ PgVg peve _ PgVe (Pe—pi)(ve—wvi) L (Pg—pi)(vg—vi)
e Te T Te T T,
Pe _ i p,
o= 237
ve - Zri 7 o Py
2 ¢ i
P
\2
£ _ Ve
T, ¢ Ty %t
_u 4 _u
Ty Ty
Pg _1 P 1
W Al & PR
b Tg Ve 0z
2 2
& _ Sg ‘e _ s
Tg Tg g
_ Y& v,
= *7%

Interphasic velocity [Hyperbolicity]

vi=pvi+ (1 —pB)v, with g €0,1]
Interphasic pressure

pi=pe+(1=7)ps = V=sraasT
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Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(arpese + agpgsg) and Y(u) = —(cupeseve + g pgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)' s(u) < 0:
Qy Ee—Ei+vi—wvvi+2—245T,
_.AL,_+ Pi

Pe

T
T T,
- 2 _ . 1 P _ Ps
_ 5215 _ E}g Eé +‘Vé VgV|4‘ & g +’Sg.Té ‘rif% 0
Tg Tg
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Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)' s(u) < 0:

Qie+Ez—Ez+V§—vm+%—%+5zTe .
7 T, o
. 2 _ 4 Pe_ Pe
_%_E|g Ee + v vg7\—/.—|—pi pg+5ng.rié 0
g g

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
_ 0 1.2 R ] 1.2
EZ—hﬁ_%‘f‘QVgY Eie-—hesat—%-i-iv-

= _Pe 1,2 g _p o4 1.2

e = i pg+2ng S pi+2Vi
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Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)T s(u) < 0:
Qié + hpsat — he + %(VZ — Vi)2 4 Pe—p;

B 45Ty
Pi .ri
T, T,
_&_hgsat_hg“’%(vg_Viy"’%“‘ngg I__é 0
Tx T, ‘=

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
_ p. 1.2 . i 1.2
Eq=he— 20+ 5V, Eio:=hpsar — 2+ 3v,
= _ P 1,2 - _p o4 1.2
Eo = pg+2vg, Ei= g pi+2Vi
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Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)T s(u) < 0:
Qié + hlsat - hg —+ %(VZ — Vi)2 4 Pe—p;

B 45Ty
Pi .ri
T, T,
_&_hgsat_hg+%(Vg*Vi)z‘i’%“‘Sng I__é 0
Tx T, ‘=

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
Eo=he— 2+ 32, Eig = hpear — 2 4 37

Eg = hg — 22 + 3, Eig = hgsat — 2 + 3
Interphasic velocity
vi:i=Bvi+(1-8)vy, with [e]l0,1]

MATH

Pascal Richter | Modeling of two-phase flow | 12/14



Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)T s(u) < 0:
Qié + hlsat - hg —+ %(VZ — Vi)2 4 Pe—p;

B 45Ty
Pi .ri
T, T,
_&_hgsat_hg+%(Vg*Vi)z‘i’%“‘Sng I__é 0
Tx T, ‘=

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
Ezzhe—%-i-%vgz. EiZ::hésat_%+%‘/iz
Eg = hg — 22 + 5, Eig = hgsat — 2 + 3
Interphasic velocity
vii=Bv+(1- By, = 6:_%
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Two-phase flow model | ® Entropy-entropy flux pair (3)

Choose mixture of physical entropy s, and s,:
n(u) = —(cwpese + agpgsg) and P(u) = —(aupeseve + cgpgsg vg)

|
@ Entropy inequality of entropy production: 9,n(u)' s(u) < 0:
Qi i hgsat — he + Pe=Pp + s, Ty

Pi

o[
T, T
Pg—Pi
_ Qg _Pem Pt A wTs L
Tg Tg

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
Ee = he — 2 + 37, Eig:= hosse — 2 + 37
Eg = hg — 22 + 5, Eig = hgsat — 2 + 3
Interphasic velocity
vii=pBvw+(1-B8)v, = p:= Ve

VTet/Te
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Two-phase flow model | ® Entropy-entropy flux pair (3)
Choose mixture of physical entropy s, and s,:
n(u) = —(aepese + agpgsg) and P(u) = —(cwpeseve + cgpgsg vi)

|
@ Entropy inequality of entropy production: 9,n(u)' s(u) < 0:

Qig+hésat_h£+pl L 45Ty r
T, T, '

P,
Qs hemmhet B T N< 0
Tg Tg

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)

Ezzhe—ﬂ+lvg2, Eieizhzsat—ﬁ-i-%v;z

_ 1.2 . pi 1.2

Eg_hg +2Vg, Elg-— hgsat_z‘i‘i\/i

Interphasic veIOC|ty
Tg

vii=pvw+(1-8)v, = ﬁ::\/ﬁ#\/?g
Interphasic density

Pi -= Psat
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Two-phase flow model | ® Entropy-entropy flux pair (3)
Choose mixture of physical entropy s, and s,:
n(u) = —(aepese + agpgsg) and P(u) = —(cwpeseve + cgpgsg vi)

|
@ Entropy inequality of entropy production: 9,n(u)' s(u) < 0:

Qig+hésat_h£+pl L 45Ty r
T, T, '

P,
Qs hemmhet B T N< 0
Tg Tg

Spec. total €NErgy = spec. enthalpy — spec. pressure + kinetic energy (physical law)
Ezzhe—ﬂ-i-lvgz. EiZ::hésat_%+%‘/iz
_ 1.2 . pi 1.2
Eg_hg +2ng Elg-— hgsat_z‘i‘i\/i
Interphasic veIOC|ty
Tg
vii=pvw+(1-8)v, = ﬁ::\/ﬁ#\/?g
Interphasic density
Pi -= Psat

— Check entropy inequality within physical relevant region!
RWTH
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Two-phase flow model | Summary

Model properties
v Source terms and interphase quantities
v Conservation of mass, momentum and energy at the interface
v" Equation of state
v" Well-posed hyperbolic model

v Entropy-Entropy flux pair
Consistent with 2nd law of thermodynamics
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Two-phase flow model | Summary

Model properties
v Source terms and interphase quantities
Conservation of mass, momentum and energy at the interface

v

v" Equation of state

v" Well-posed hyperbolic model
v

Entropy-Entropy flux pair
Consistent with 2nd law of thermodynamics

— No linear degenerated field for first eigenvalue Ay = v;,

o o . oupevetogpgVy
only iff vi:= v, or vii=vg, or vi:= upetagpg
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Two-phase flow model | Next steps

Numerical schemes for quasilinear system
© Path-conservative scheme, Castro et al. [10]

e transform into homogeneous system in non-conservative form
e path connects two states up and ug at its left x and right xg limits
across a discontinuity

® Relaxation, Baudin, Berthon, Coquel, Masson, and Tran [11]

e transform system, such that it is linearly degenerated (7)
e extend system with relaxed pressure and temperature equations
e system linearly degenerate — easy to find Riemann solution.
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