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Incompressible fluids

Incompressible Navier–Stokes equations :

8
><

>:

⇢
�
@u
@t + (u ·r)u

�
� µ�u +rp = ⇢f

div u = 0

u(0, x) = u0(x).

(NS)

Difficulties

1

Mathematical complexity of the Navier–Stokes equations

2

Time evolution of the fluid domain

Approaches

1

Study of shallow water approximations of incompressible

Navier–Stokes/Euler (Advantages : simplicity, dimension reduction)

2

Study directly incompressible Navier–Stokes/Euler (Advantages :

precision, general regime)
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Mathematical model

Fluid equations :

8
><

>:

⇢
�
@u

@t + (u ·r)u
�
� µ�u +rp = ⇢f in ⌦

t

,

div u = 0 in ⌦
t

,

u(0, x) = u

0

(x) in ⌦
0

.

(1)

Boundary conditions :

8
><

>:

u · n = 0 on @⌦
t

\ �
t

,⇥
↵u + µ

�
ru + tru

�
n

⇤
tan

= 0 on @⌦
t

\ �
t

,�
µ
�
ru + tru

�
� p

�
n = � (�+ p

a) n in �
t

,

(2)

Kinematic boundary condition :

n
(1, u) is tangential to the free surface (t, �

t

), t � 0. (3)
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Level set formulation to characterize the fluid domain

⌦
t

is characterized by a continuous function � such that

The kinematic boundary condition on the free surface is now replaced by
(
@
t

�+ ũ ·r� = 0 8(x , t) 2 D ⇥ [0,T ],

�(0, x) = �
0

(x) on D,
(4)

where ũ is a smooth field defined on D such that

ũ = u on �
t

,

and �
0

is a level set function for the initial fluid domain.

Question : How to construct the velocity field ũ defined on D from u defined
on ⌦

t

?
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Velocity extension

Question : How to construct the velocity field ũ defined on D from u defined
on ⌦

t

?
8
><

>:

�a�~u +~u = 0 in D \ ⌦
t

r~u · n = 0 on @D

~u = u on ⌦̄
t

(5)

a > 0 is large enough such that the extended velocity is smooth enough.
a > 0 is small enough such that the values of the flux on the free surface do
not interfere with its values outside or inside the fluid.
Numerical resolution : Lagrange finite elements method
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General idea

The problem is time dependent and we intend to solve it on [0,T ].

We divide the problem time interval, [0,T ] to N sub-intervals

[tn, tn+1]
n2{0,..,N�1}.

Iteration n! Resolution of the problem on [tn, tn+1].

At each iteration :

1

We move the fluid domain following the fluid velocity using the

1

velocity extension (construction of velocity field of the level set

advection equation)

2

distancing (construction of the convenient initial condition for

the level set advection equation)

3

resolution of the advection equation (to find the level set

corresponding to the advected domain).

2

We solve the time-discretized fluid equation on the advected domain

using a convenient mesh adaptation.
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Distancing

The level-set advection equation on the time sub-interval [tn, tn+1] writes
(
@
t

�+ ũ ·r� = 0 8(x , t) 2 D ⇥ [tn, tn+1],

�(tn, x) = �
t

n (x) on D,
(6)

where �
t

n is a level-set function for the fluid domain ⌦
t

n at time t

n.

For stability reasons, �
t

n must satisfy

|r�
t

n | = 1, (7)

in the vicinity of the free surface.

Distancing is the construction of a level-set function �
t

n (x) of ⌦
t

n such
that (7) is satisfied [Dapogny, Frey 2012 ] .
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Method of characteristics

We use the method of characteristics

1 for the resolution of the level set advection equation. The solution is
constant along the characteristics curves.

2 for the time discretization of the Navier–Stokes equation i.e. we use the
fact that ✓

@u

@t
+ (u ·r)u

◆
=

du(X(x, t; s), s)
ds

|
s=t

,

where X(x, t; s) is the characteristic curve (parametrized by s) which
cross x at time t.

8
<

:
⇢
u

n(x)� u

n�1 � X

n�1(x)
�t

� µ�u

n(x) +rp

n(x) = ⇢fn in ⌦
t

n

divun(x) = 0 in ⌦
t

n

The characteristic equation is solved using a fourth order Runge-Kutta scheme.
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Mesh adaptation

The fluid free surface is explicitly discretized.

The mesh is adapted such that the approximation, geometric and
interpolation errors are controlled.

Mesh elements outside the fluid (far from the free surface) are large since
no value is of interest in this region.
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Global scheme

Notations :
Dn represents a convenient meshing of the computational domain D at time t

n.

T n is a subset of Dn and represents a convenient meshing of the fluid domain
⌦

t

n at time t

n

Scheme

1

At time t

0 = 0 : T 0 ⇢ D0

characterizing ⌦
t

0 , u0.

2

For n = 0, ...,N � 1,

mesh input output

Velocity extension (Dn \ T n) [ �n un ~un

Distancing Dn (Dn, T n) �n

Advection Dn (~un

, �n

) �n+1

Mesh adaptation Dn (�n,Dn) Dn+1

Interpolation Dn+1 ~un ~un

NS resolution T n+1 ~un (un+1, pn+1)

3

We return uN , pN ,�N ,DN .

Related paper :
Pascal Frey, Dena Kazerani, Thi Thanh Mai Ta. An adaptative numerical
scheme for solving incompressible two-phase and free-surface flows. In revision
for International Journal for Numerical Methods in Fluids.
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Viscous fluid in the unit circular domain

Parameters : ⇢ = 1, µ = 1, � = 7.2, ↵ = 10, p

a = 0.

Data : f = (0,�100) and the initial solution is given by :

Space and time step : �t ' 10

�3
, h

min

= h

max

= 0.3 and Final time : T = 4.435.
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Dam break test cases

The dam break test cases considered here are the same as in

Marcela A. Cruchaga, Diego J. Celentano, Tayfun E. Tezduyar. Collapse of a liquid column :

numerical simulation and experimental validation. Published in Comput. Mech., 2007.

The test cases are done for

shampoo

water

Our results are compared with

the physical experiments

the numerical results

presented in this reference.

Differences Our framework Reference’s framework
Mathematical problem bi-fluid problem free-surface fluid

Fluid equation computational domain fluid domain
Meshing homogenous fixed meshing mobile unstructured meshing

Advection equation ETILT method of characteristics
Time step �t = 0.001 5/10 times larger

We use the same friction law as well as the same turbulent model (for the dam
break with water problem) as in this reference.
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Dam break with shampoo

Parameters : ⇢ = 1024, µ = 8, � = 0.07, p

a = 0 and ↵ = 10

�2
(computed following the law ↵ = ⇢|U|

C

2
f

with C

f

= 190 and |U| = 0.4).

Data : f = (0,�9.8).
Domain dimensions : Computational domain is 0.42m ⇥ 0.44m , fluid domain is 0.114m ⇥ 0.114m.
Time step : �t = 0.01 or the first ten iterations and �t = 0.02 for other iterations.

Final time : T = 0.5.

Space step : h

min

= 0.0009, h

max

= 1 and hgrad = 2.5.

 

t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5
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Dam break with water

Parameters : ⇢ = 1000, µ = 0.001, ↵ = 10�6, pa = 0 and � = 0.07.
Data : f = (0,�0.98).
Specificity : Reynolds number is high  turbulent effects  energy dissipation  we
correct the model by modifying the viscosity as

µ
mod

= min
⇣
µ+ l

2

mix

⇢
p

D(u) : D(u)/2;µ
max

⌘
,

where l

mix

= C

t

h

UGN

such that C

t

is a modelling parameter, h
UGN

is a characteristic
element size and µ

max

is a cut-off value. We set here

C

t

= 3.57, h

UGN

= hmin = 9 ⇥ 10�4, µ
max

= 1.5.

In practice : we take µ = 0.001 for the first iteration of the algorithm. Then, we take
the cut-off value µ

max

for viscosity i.e. 1.5.
Time step : �t = 0.001 for the first iteration of the algorithm and �t = 0.005 for
others.
Final time : T= 1.5.
Space step : hmax = 1 and hgrad = 2.5.
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Dam break with water

t = 0.1 0.5 t = 0.6 1.0 t = 1.1 1.5
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Conclusion and perspectives

Conclusion :
Adaptive algorithm for the numerical resolution of the free-surface Navier-Stokes
equations satisfying slip Navier boundary conditions

Perspectives :
Modelling the atmospheric pressure (du to the external fluid) for the simulation
of the free-surface Navier–Stokes

Some error estimates for the presented numerical scheme (Numerical test cases
seem to be very sensitive to the variation of the time step)

Extension to complex fluids (viscoelastic, viscoplastic, ...)

Extension to sloshing problems

Comparison between the numerical solution of the free-surface Navier–Stokes
problem and shallow water models

21 / 22



Conclusion and perspectives

Conclusion :
Adaptive algorithm for the numerical resolution of the free-surface Navier-Stokes
equations satisfying slip Navier boundary conditions

Perspectives :
Modelling the atmospheric pressure (du to the external fluid) for the simulation
of the free-surface Navier–Stokes

Some error estimates for the presented numerical scheme (Numerical test cases
seem to be very sensitive to the variation of the time step)

Extension to complex fluids (viscoelastic, viscoplastic, ...)

Extension to sloshing problems

Comparison between the numerical solution of the free-surface Navier–Stokes
problem and shallow water models

21 / 22



Thank you for your attention !
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