

Complex rheology in geophysical granular flows: from field to laboratory scale

Anne Mangeney^{1,1}

erc

¹Institut de Physique du Globe de Paris, Université Paris Diderot, SPC ¹ Equipe ANGE INRIA-Lab. Jacques Louis Lions-CEREMA

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Large variety of natural flows

Piton de la Fournaise, La Réunion $V=1-10^3 \text{ m}^3$, $T \sim \text{s}$

Volume scale : $m^3 \rightarrow 10^5 \text{ km}^3$ Time scale : second \rightarrow year \neq Sources, \neq Topographies

Very different rheological behavior !

Huge polydispersity

Debris avalanche deposit, Socompa, Chile

Pyroclastic flow deposit, Tutupaca volcano, Peru

Pyroclastic flows

Strong role of gaz Significant erosion

Snow avalanches

Dense granular flow

Strong role of air Significant erosion

Very different types of snow avalanche behavior: phase transitions, etc.

Debris flows

Debris flows, Alps

Strong role of water Significant erosion

Debris flows, Iceland

Debris flows

Avalanches may turn into debris flows

Mud flows

(Photo H. Hubl, Vienna)

QUINDICI, Italy

Strong role of water Fine particles

Mine collapse

Bingham Canyon, Utah, Avril 2013, 65 Mm³

Two landslides

On other planets

Ganges Chasma landslide, Valles Marineris, Mars

Gullies, mega-dune of Russell crater, Mars

Flow type and range of main parameters

Flow type	Setting, ambient fluid	Interst	itial fluid	Particle size (m)	Particle density (kg m ⁻³)	Particle volume fraction	
Subaerial landslides, rockfalls, rock or debris avalanches	Subaerial, extraterrestrial	Air, no a water o	one, small content	$10^{-3} - 10^{1}$	~2000–3000	~0.4–0.7	
Submarine landslides	Subaqueous	Water					
Turbidity currents	Subaqueous	Water		$10^{-4} - 10^{-1}$	~1500–2500	~0.001-0.1	
Snow avalanches (dense, powder ^c)	Subaerial	Air (water)		$10^{-4} - 10^{-1}$	~100–1000	~0.1–0.4 ^b ~0.001–0.01 ^c	
Pyroclastic density currents (dense ^d , dilute ^e)	Subaerial, subaqueous, extraterrestrial	Volcanic gases, air		$10^{-6} - 10^{0}$	~500–3000	~0.1-0.5 ^d ~0.001-0.01 ^e	
Debris flows, lahars	Subaerial, extraterrestrial	Water		$10^{-4} - 10^{0}$	~2000–3000	~0.2–0.8	
Flow type	Volume (m ³)	Velocity $(m s^{-1})$	Thickness (m)	Runout distance (km)			
Subaerial landslides, rockfalls, rock or debris avalanches	$\frac{10^{0}-10^{10}}{10^{9}-10^{13a}}$	$10^{-1} - 10^2$	$10^{-1} - 10^2$	$\frac{10^{0}-10^{1}}{10^{1}-10^{2}}$			
Submarine landslides	$10^{0} - 10^{13}$	_	$10^{-1} - 10^2$	$10^{1} - 10^{2}$			
Turbidity currents	$10^{6} - 10^{10}$	$10^{0} - 10^{1}$	$10^{1} - 10^{2}$	$10^1 - 10^3$			
Snow avalanches (dense, powder ^c)	$10^4 - 10^6$	$10^{1}-10^{2}$	$10^{0} - 10^{1}$	$10^{-1} - 10^{0}$			
Pyroclastic density currents (dense ^d , dilute ^e)	$10^4 - 10^8$	10^{0} -10 ^{1d} 10 ¹ -10 ^{2e}	$10^{0}-10^{2}$	$10^{0}-10^{2}$	Delannay et al., 2017		
Debris flows, lahars	$10^4 - 10^9$	$10^{0} - 10^{1}$	$10^{0} - 10^{1}$	$10^{0} - 10^{2}$			

Different physical processes

Fluid phase (water, mud)

Fluidization (gaz, air)

submarine

Erosion: static/flowing transition

Main questions in geophysics

- How to detect geophysical flows and to assess their related hazards and indirect impact (tsunamis, etc)?
- What is the contribution of gravitational flows in erosion processes and relief evolution at the surface of the Earth and other planets?
- How are gravitational flows related to external forcing? Could they provide indicators or precursors of these forcing processes?
- What physical processes may be at the origin of the high mobility of large landslides?
- How to quantify and model erosion/deposition processes, solid/fluid interaction, polydispersity and fragmentation at the natural scale?
- How to retrieve the mechanisms of propagation and the characteristics of the flows from their deposit and/or from the generated seismic or geophysical signal?

Review paper: Delannay, Valance, Mangeney, Roche, Richard, 2017

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

What does a model need to provide results QUANTITAVELY comparable to observations ?

- Initial and boundary conditions (volume identification by geologists)
- Underlying topography (space physics, imagery)
- Detailed shape and thickness of the deposit (geology, volcanology, marine geoscientists)
- Data on the dynamics (seismologist)

- Accurate description of physical processes in the models, rheological behavior (physics, mechanics)
- Develop and solve accurately the equations of flows over real topography (mathematicians)

Field data

Initial conditions :

- Scar, topography pre-event

Deposit :

- Runout, area of deposit, local thickness
- Spatial distribution of thickness deposit: Fine morphology (levées, front shape...)

Dynamics:

- Witness
- Camera
- Generated seismic waves

Interaction flow/topography

Specific structures of the deposit

Submarine deposits, Cannat et al., 2013

Landslide generated seismic waves

Favreau, 2010, Moretti et al., 2012, 2015

Outline

I – Geophysical reality:

- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

From field to laboratory scale

Natural flows Laboratory granular flows Same physical processes ? km³ cm³ Numerical simulation Velocity and thickness Heterogeneous materials measurements Few field data 600 600 400 400

200

200

A lot of laboratory experiments !

Submarine deposits, Cannat et al., 2013

A lot of laboratory experiments !

Role of particle size in erosion processes

Roche et al., 2013

Segregation in self-channeling flows

Félix and Thomas, 2004 Johnson et al., 2012

Main questions in physics

• How to describe the grains/fluid coupling, taking into account in particular dilatation/compression effects?

• Can we obtain constitutive relations giving a complete description of the granular flows and of their transitions (jammed, dense, dilute)?

• How can be captured the boundary conditions and how do they affect the flow? This includes mobile interfaces related to erosion/deposition

• How to quantify and describe theoretically the evolution of granular size distribution in space and time (segregation, fragmentation processes) and its coupling with the flow?

Physics and Geophysics

• How to measure granular and fluid stresses, particle volume fraction, etc. in both experimental and natural flows?

Review paper: Delannay, Valance, Mangeney, Roche, Richard, 2017

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Equations

Mass and momentum conservation equations:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla .(\rho \mathbf{u}) &= 0 \\ \frac{\partial (\rho \mathbf{u})}{\partial t} &= -\mathbf{u} \nabla .(\rho \mathbf{u}) - \rho \mathbf{u} . \nabla \mathbf{u} + \operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{g} \end{aligned}$$

Issues:

- Rheology of natural granular materials
- Applicability to natural flows : computational time requires approximations

Hard to discriminate model approximation and rheological behaviour!

Numerical modelling of landslides

• Modeling

Yet far from the precise description of the rheology of natural materials !!!!

Thin layer approximation on 2D topography

Thin layer approximation on 3D topography

• Until very recently and still used :

arbitrary extension of 1D equations ...

Bouchut, Mangeney, Perthame, Vilotte, 2003; Bouchut and Westdickenberg, 2004; Mangeney, Bouchut, Thomas, Vilotte, Bristeau, 2007

Empirical law deduced from experiments

Steady uniform flows on planes with different inclinations

 δ_2

01

Ĥ

Pouliquen 1999, Forterre and Pouliquen 2003

Steady uniform flows: tan $\theta = \mu$, with $\mu = \tan \delta$

$$\mu(Fr, h) = \mu_s + \frac{\mu_2 - \mu_s}{\frac{\beta h}{\mathscr{L}Fr} + 1} \qquad Fr = \frac{\bar{u}}{\sqrt{gh\cos\theta}}$$

Origin of the $\,\mu(I)$ rheology

 $\delta_s = 20.9^{\circ}$ $\delta_2 = 32.76^{\circ}$ $\beta = 0.136$ $\mathscr{L} = 0.825 \times 10^{-3}$ m

Friction / when thickness
$$h$$

Additional viscous terms Gray and Edwards, 2014

Granular flows over complex topography

$$\partial_t (h/c) + \nabla_x \cdot (h \boldsymbol{u}') = 0$$

$$\begin{aligned} \partial_{t}\boldsymbol{u}' + c\boldsymbol{u}' \cdot \nabla_{x}\boldsymbol{u}' + \frac{1}{c}(\boldsymbol{Id} - \boldsymbol{ss}^{t})\nabla_{x}(\boldsymbol{g}(hc + b)) &= \\ \frac{-1}{c}(\boldsymbol{u}'^{t}\boldsymbol{H}\boldsymbol{u}')\boldsymbol{s} + \frac{1}{c}(\boldsymbol{s}^{t}\boldsymbol{H}\boldsymbol{u}')\boldsymbol{u}' - \frac{\boldsymbol{g}\boldsymbol{\mu}c\boldsymbol{u}'}{\sqrt{c^{2}||\boldsymbol{u}'||^{2} + (\boldsymbol{s}\cdot\boldsymbol{u}')^{2}}}\left(1 + \frac{\boldsymbol{u}'^{t}\boldsymbol{H}\boldsymbol{u}'}{\boldsymbol{g}c}\right)_{+} \\ \vec{n} &= \left(-\frac{\nabla_{x}b}{\sqrt{1 + ||\nabla_{x}b||^{2}}}, \frac{1}{\sqrt{1 + ||\nabla_{x}b||^{2}}}\right) \equiv (-\boldsymbol{s}, c) \in \mathbb{R}^{2} \times \mathbb{R} \end{aligned}$$

$$\mu = \mu_s$$

or
$$\mu(Fr, h) = \mu_s + \frac{\mu_2 - \mu_s}{\frac{\beta h}{\mathscr{L}Fr} + 1}$$

Other empirical terms can be added with more unconstrained parameters...

Limits of the Thin Layer Approximation

а

Granular flow experiments

Granular column collapse over an inclined channel

Friction angles: repose $\delta_r \approx 23^\circ \pm 0.5^\circ$, avalanche $\delta_a \approx 25^\circ \pm 0.5^\circ$

Control parameters:

- slope angle: $0^{\circ} < \theta < \delta$
- volume $V = h_0 r_0 W$
- aspect ratio $a = h_0 / r_0$
- column shape
- channel width

Mangeney, Roche, Hungr, Mangold, Faccanoni, Lucas, 2010 Farin, Mangeney, Roche, 2014

Granular collapse over a rigid bed

Laboratory experiments

Monolayer (Saint-Venant) versus Multilayer models

Fernandez-Nieto, Garres, Mangeney, Narbona-Reina, 2016

Calibration of the constant friction angle

Simulation of self-channeling flows

Very good qualitative agreement between experimental and numerical results

only with
$$\mu(Fr, h) = \mu_s + \frac{\mu_2 - \mu_s}{\frac{\beta h}{\mathscr{L}Fr} + 1}$$

Mangeney et al. 2007, Johnson and Gray, 2011

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Simulation of natural flows

Simulation of observed deposits (Switzerland)

 $\mu=\tan\delta$: empirical description of the mean dissipation

t = 70 s

Calibrated friction angle : $\delta = 17^{\circ}$ Small compared to friction angles of natural materials ! $\delta_r \approx 35^{\circ}$

Origin of the high mobility of natural flows ?

Pirulli and Mangeney, 2008

Simulation of a large variety of natural flows

Simulation with empirical friction coefficient

Lucas, Mangeney, Ampuero, Nature Communications, 2014

Empirical friction laws based on deposit data

Laboratory experiments at high velocity :

Roche, Van Den Wildenberg, Delannay, Valance, Mangeney, 2017

Reproduce small to large landslides

(a)

Improve deposit morphology

Simulation of the Mt-Steller landslide

The deposit area is not enough to constrain landslide models !!

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Seismic data interpreted with oversimplified landslide source models Brodsky et al. 2003, Yamada et al. 2013, Allstadt 2013, Zhao et al. 2014, ...

Numerical simulation and inversion of landquakes

Low frequency direct or inverse approach

Time-dependent basal stress field applied on top of the terrain

$$\mathbf{T}_{x} = \rho g h \left(\cos \theta + \frac{\mathbf{u}_{h}^{t} \mathcal{H} \mathbf{u}_{h}}{g \cos^{2} \theta} \right) \left(\mu \frac{u_{X}}{\|\mathbf{u}\|}, \mu \frac{u_{Y}}{\|\mathbf{u}\|}, -1 \right)$$

Curvature effects

 X_{\bigstar}

Thurweiser landslide

Thurweiser landslide seismic waves

small topographic and complex media effects are expected

Thurweiser landslide seismic waves

The scenario with glacier better reproduces the vertical waveform

Thurweiser landslide seismic waves

Strong effect of centrigulal acceleration on landslide dynamics

Mt-Steller rock-ice avalanche

Role of erosion in landslide dynamics ?

Moretti et al., 2012, 2015

Simulation of the Mt-Steller landslide

The deposit area is not enough to constrain landslide models !!

Long period : inverted and simulated force

Force filtered between 20-80s

Taking into account erosion is necessary to reproduce the dynamics !

Sensitivity to friction coefficient

Simulation of Mount Meager landslide

Moretti et al., 2015

Sensitivity to friction coefficient

Physical origin of these low friction coefficients?

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Experiments of granular flows

Iverson, Logan, LaHusen, Berti, 2010, USGS

Richard et al., 2008

Dense granular flows

Three subcategories depending on the nature of particle/particle interactions

For simple shear flows:

(i) particle inertia-dominated regime (dry)

$$I = I_{\rm pi} = \sqrt{\rho_{\rm p} \dot{\gamma}^2 d^2 / P_{\rm p}}$$

(ii) viscous resistance-dominated regime (grain+fluid)

$$I = I_{\rm v} = \frac{\eta_{\rm f}\dot{\gamma}}{P_{\rm p}}$$

 $I = I_{\rm fi} = \sqrt{\rho_{\rm f}} \dot{\gamma}^2 d^2 / P_{\rm p}$

(iii) fluid inertial resistance-dominated regime (grain + fluid)

$$t_{\text{macroscopic strain rate}}$$
 t_{un}

 $+\dot{\gamma}d$

t particle rearangment under confining pressure

 $t_{\rm micro}^{\rm visq}=\eta/P^p$

rheology

Inertial number

Rognon, 2006

Unsteady flows on inclined planes

Jop, Forterre, Pouliquen, 2007

Granular flow experiments

Granular column collapse over an inclined channel

Friction angles: repose $\delta \approx 23^{\circ} \pm 0.5^{\circ}$, avalanche $\delta \approx 25^{\circ} \pm 0.5^{\circ}$

- column shape
- degree of bed compaction
- channel width

Granular collapse over a rigid bed

Granular collapse over an erodible bed

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

2D granular flow modelling

• Momentum equation:

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{u} \otimes \boldsymbol{u})\right) = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho \boldsymbol{g}$$

• Incompressibility:

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\sigma = -p \operatorname{Id} + \sigma'$$
, pressure: $p = -\operatorname{trace}(\sigma)/3$
Strain rate tensor: $D(u) = \frac{1}{2}(\nabla u + \nabla^T u)$

Constitutive relation

Drücker-Prager yield stress

Constitutive relation

$$\begin{cases} \boldsymbol{\sigma}' = 2\eta(|\boldsymbol{D}|, p)\boldsymbol{D} + \mu_s p \quad \frac{\boldsymbol{D}}{|\boldsymbol{D}|} & \text{if } |\boldsymbol{D}| \neq 0, \\ |\boldsymbol{\sigma}'| \leq \mu_s p & \text{if } |\boldsymbol{D}| = 0. \end{cases}$$
Plasticity (flow/no flow) criterion

Constant viscosity:
$$\eta(|\boldsymbol{D}|,p) = \text{Cte}$$

 $\mu(I)$ rheology: $2\eta(|\boldsymbol{D}|,p) = rac{k(\mu_2 - \mu_s)p}{k|\boldsymbol{D}| + I_0\sqrt{p}}$

Ionescu, Mangeney, Bouchut, Roche 2015

Boundary conditions

- At the free surface : $\mathcal{D}(t)$ characteristic function of the domain $\boldsymbol{\sigma} \boldsymbol{n} = 0$ on $\Gamma_s(t)$, $\operatorname{St} \frac{\partial 1_{\mathcal{D}(t)}}{\partial t} + \boldsymbol{u} \cdot \nabla 1_{\mathcal{D}(t)} = 0$,

- At the base and walls: Coulomb friction

$$\boldsymbol{u} \cdot \boldsymbol{n} = 0, \quad \boldsymbol{\sigma}_{T} = \boldsymbol{F}^{f}$$

$$\begin{cases} \boldsymbol{F}^{f} = -\mu^{f} [-\sigma_{n}]_{+} \frac{\boldsymbol{u}_{T}}{|\boldsymbol{u}_{T}|} \text{ if } \boldsymbol{u}_{T} \neq 0, \\ |\boldsymbol{F}^{f}| \leq \mu^{f} [-\sigma_{n}]_{+} \text{ if } \boldsymbol{u}_{T} = 0. \end{cases}$$

 $\mu^{f} = \begin{cases} \mu_{w}^{f} \text{ on the back wall and on the lateral walls,} \\ \mu_{b}^{f} \text{ on the rough bottom.} \end{cases}$

Side wall effects

$$\rho \left(\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right) + \nabla p - \operatorname{div}(\boldsymbol{\sigma}') = \underbrace{\frac{2}{w}}_{w} F_w^f + \rho \boldsymbol{g}$$
$$\begin{cases} \boldsymbol{F}_w^f = -\mu_w^f [p]_+ \frac{\boldsymbol{u}}{|\boldsymbol{u}|} \text{ if } \boldsymbol{u} \neq 0, \\ |\boldsymbol{F}_w^f| \leq \mu_w^f [p]_+ \text{ if } \boldsymbol{u} = 0, \end{cases}$$

For a laminar shear flow with hydrostatic pressure, equivalent to: *Taberlet et al., 2003; Jop et al., 2005*

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{I_0 + I}I + \mu_w \frac{H - z}{W}$$

Martin, Ionescu, Mangeney, Bouchut, Farin, 2017
Unsteady flows on inclined planes

Jop, Forterre, Pouliquen, 2007

Granular collapses

ALE (Arbitrary Lagrangian-Eulerian) description to compute the evolution of the fluid domain

- iterative decomposition-coordination formulation, coupled with the augmented Lagrangian method: *Ionescu, Mangeney, Bouchut, Roche, 2014*

-regularization method: *Lusso, Ern, Bouchut, Mangeney, Farin, Roche, 2017*

Crosta et al. 2009, Lagrée et al. 2011

Parameters deduced from the experiments

Grain diameter: $d = 0.7 \pm 0.1$ mm Density: $\rho_s = 2500 \text{ kg m}^{-3}$, $\nu = 0.62 \implies \rho = 1550 \text{ kg m}^{-3}$ Repose angle: $\theta_r = 23.5^o \pm 0.5^o$ ($\mu_r = 0.43 \pm 0.01$) Avalanche angle: $\theta_a = 25.5^{\circ} \pm 0.5^{\circ} \ (\mu_a = 0.48 \pm 0.01)$ Wall friction: $\mu_w = \tan(10.5^\circ) = 0.18$ Pouliquen and Forterre 2002 Additional friction due to the wall: + $\mu_w h/W$ Jop et al. 2005 Constant viscosity: $\mu = \mu_s = \tan(25.5^\circ)$, $\mu(I)$ rheology: $\mu_s = \tan(25.5^o)$, $\mu_2 = \tan(36^o)$, $I_0 = 0.279$ Friction at the base: $\mu_b = \mu = \tan(25.5^\circ)$ 0.10 0.06 0.04

0.00

0.10

0.20

0.30

0.40

Simulation with the variable viscosity (μ (I))

Well reproduces the dynamics

The gate has to be taken into account !

Effect of the gate

Effect of the side walls

Side wall friction: the static-flowing interface closer to the free surface

Effect of the side walls

Martin, Ionescu, Mangeney, Bouchut, Farin, 2017

Insight into the flow dynamics

Strain rate localization

 $2\eta(|\mathbf{D}|,p) = \frac{k(\mu_2 - \mu_s)p}{k|\mathbf{D}| + I_{0,s}/\overline{p}},$

Viscosity η in the μ (*I*) rheology

Very similar results with η = 1 Pa.s

Effect of viscosity

Static/flowing interface

Lusso, Ern, Bouchut, Mangeney, Farin, Roche, 2017

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Insight into the static/flowing interface dynamics

A thin flowing layer above a static layer:

Equation for the static/flowing transition $\dot{b}(t)$?

Viscoplastic models CONTAIN the static/flowing transition

without having to prescribe arbitrary exchange rates,

velocity profiles (Capart et al. 2015, Gray et al. 2015,...), etc...

Bouchut, Ionescu, Mangeney, 2015

 $\partial_t U(t, Z) + S(t, Z) - \partial_Z (\nu \partial_Z U(t, Z)) = 0$ $S = g(-\sin\theta + \partial_X (h\cos\theta)) - \mu_s \partial_Z p$

Thin-layer approximation

 $p = g \cos \theta (h - Z) \implies S = g \cos \theta (\tan \delta - \tan \theta + \partial_X h)$

Boundary conditions

$$\begin{cases} U = 0 & \text{at } Z = b(t), \\ \nu \partial_Z U = 0 & \text{at } Z = b(t), \\ \nu \partial_Z U = 0 & \text{at } Z = h. \end{cases}$$

$$\dot{b}(t) = \frac{S(t, b(t))}{\partial_Z U(t, b(t))}$$

$$\dot{b}(t,X) = \frac{-\partial_{ZZ}^2(\nu \partial_Z U)(t,X,b(t))}{S(t,X)}\nu$$

Lusso, Bouchut, Ern, Mangeney, 2017

Initial condition $U(0, Z) = U^0(Z)$

Static/flowing interface

x

- If $\nu = 0$ and $\partial_Z U(t, b(t)) \neq 0$, then $U(t, Z) = \max \left(U^0(Z) - St, 0 \right)$
- If $\nu > 0$ and $S(t, b(t)) \neq 0$, then

Measurements of the static/flowing interface

Laboratory experiments

no viscosity (i. e. $\mu(I) = \mu_s$)

 $\mu(I)$ rheology : $2\eta(|\mathbf{D}|,p) = \frac{k(\mu_2 - \mu_s)p}{k|\mathbf{D}| + I_0\sqrt{p}}$

Role of downslope gradients

• If $\nu = 0$ and $\partial_Z U(t, X, b(t)) \neq 0$, then

$$\dot{b}(t) = \frac{g\cos\theta(\tan\delta - \tan\theta + \partial_X h)}{\partial_Z U(t, b(t))}$$

• If $\nu > 0$ and $S(t, X) \neq 0$, then

$$\dot{b}(t) = \frac{-\partial_{ZZ}^2(\nu \partial_Z U)(t, X, b(t))}{g \cos \theta (\tan \delta - \tan \theta + \partial_X h)} \nu$$

In the case of granular collapse:

 $\tan \delta - \tan \theta = 0.0837$ $\partial_X h(t = 0.66 \text{ s}, X = 90 \text{ cm}) \simeq 0.125$

S<0, erosion occurs even in the inviscid case : instantaneous erosion of the full layer Then S is posivite : deposion occurs progressively

Modelling of the static/flowing transition

Two thin-layer depth-averaged model

Equation for the static/flowing transition $\dot{b}(t)$?

Not possible without assumptions on the velocity profiles !!!

Capart et al. 2015 : S-shaped profile *Gray et al. 2015* : Bagnold profile

The shape of the velocity profile changes with time (GDR MiDi, 2004, etc.)!

Bouchut, Ionescu, Mangeney, 2015

Outline

- I Geophysical reality:
- Complexity of flows and physical processes
- Field data to validate rheological models of real flows
- From field observation to laboratory experiments
- II Modelling of natural landslides
- Shallow model and rheology
- Unexplained high mobility of natural landslides
- Investigating landslide dynamics: seismic data and models
- III Back to the rheology of granular materials
- Laboratory experiments
- 2D visco-plastic models
- Insight into the static/flowing interface
- Multi-layer models

Multilayer Shallow Model

For application to natural flows, equations have to be simplified to lower the computational cost !

➡ Thin-layer (i. e. shallow) approximation a=h/L<<1</p>

 $\Rightarrow p = g \cos \theta (h - Z)$ pression hydrostatique

Fernandez-Nieto, Garres, Mangeney, Narbona-Reina, 2015

Multilayer Shallow Model

Unsteady flows on inclined planes

Fernandez-Nieto, Garres, Mangeney, Narbona-Reina, 2017

Monolayer (Saint-Venant) versus Multilayer models

Fernandez-Nieto, Garres, Mangeney, Narbona-Reina, 2016

Multilayer models and wall friction

Static-/flowing interface within erodible bed

Strong effect of wall friction on the static/flowing interface dynamics

Comparison with shallow visco-plastic model

Strong effect of wall friction on the static/flowing interface dynamics

 $\mu(I)$ in the Multilayer Shallow Model reproduces qualitatively the increase of runout due to entrainment on sloping erodible beds.

How to get quantitative agreement ?

Non-hydrostatic effects, dilatancy ??

Erosion waves ?

- Steep front over rigid and erodible bed
- Waves located behind the front

Force chains ahead of the front

Estep and Dufek, 2012

Force chains in granular media

Role of force chains in granular media

Dilatancy effects

Up to 10% of dilatation in granular collapse !

Influence of the compaction of the erodible bed

I – Fluis/solid model with dilatancy

(a) Compaction sous vibration. (b) Évolution de la fraction volumique en fonction du nombre de coups imposés, pour différentes accélerations relatives Γ (d'après Richard *et al.*, 2005).

Essai en cisaillement à déformation imposée

Principe de la cellule de cisaillement simple : une contrainte normale σ est appliquée sur la demi-boite supérieure et une déformation $\gamma = \Delta X/Y_0$ est imposée. On mesure la contrainte tangentielle τ et la variation de volume donnée par ΔY .

Le comportement du matériau dépend de sa préparation initiale

Pour des déformations > 60 %, l'état initial semble oublié et on atteint une contrainte tangentielle τ_c et une fraction volumique ϕ_c ne dépendant plus de la déformation ni de la préparation. Cet état est appelé état critique. Il dépend de la contrainte normale de confinement

Mesures obtenues en cellule de cisaillement avec des billes d'acier de 1 mm (données issues de Wroth, 1958). (a) Variation de la contrainte tangentielle τ en fonc tion de la déformation imposée $\gamma = \Delta X/Y_0$ pour une contrainte de confinement de de 140 kPa pour un empilement initialement dense (•) et initialement lâche (•) (b) Fraction volumique ϕ fonction de γ . (c) et (d) Variation de la contrainte tangen tielle critique τ_c et de la fraction volumique critique ϕ_c en fonction de la contrainte normale appliquée.

(a) Dilatance observée lorsqu'on cisaille un empilement bidimensionel triangulaire. (b) Contractance observée lorsqu'on cisaille un empilement carré (dessins inspirés d'expériences de Brown & Richards, 1970).

Modeling of debris flows (grain/fluid)

Iverson, Denlinger; Denlinger, Iverson 2001, Iverson, George; George, Iverson 2014

Pitman and Le 2005, Pelanti et al. 2008, 2011

Modeling of debris flows (grain/fluid)

Iverson, Denlinger; Denlinger, Iverson 2001, Iverson, George; George, Iverson 2014

Pitman and Le 2005, Pelanti et al. 2008, 2011

Jackson's model

 φ : solid volume fraction, $~1-\varphi$: fluid volume fraction

Mass conservation :

*
$$\partial_t(\rho_s\varphi) + \nabla \cdot (\rho_s\varphi v) = 0$$

* $\partial_t(\rho_f(1-\varphi)) + \nabla \cdot (\rho_f(1-\varphi)u) = 0$

• Momentum conservation :

*
$$\rho_s \varphi(\partial_t v + (v \cdot \nabla) v) = -\nabla \cdot T_s - \varphi \nabla p_{f_m} + f + \rho_s \varphi \mathbf{g}$$

* $\rho_f (1 - \varphi)(\partial_t u + (u \cdot \nabla) u) = -\nabla \cdot T_{f_m} + \varphi \nabla p_{f_m} - f + \rho_f (1 - \varphi) \mathbf{g}$
 $T_s = p_s \operatorname{Id} + \widetilde{T}_s \qquad T_{f_m} = p_{f_m} \operatorname{Id} + \widetilde{T}_{f_m}$

Friction between the solid and fluid phases : $f = \beta(u - v)$

5 unknowns : arphi , v , u , p_s , p_{f_m} , 4 equations

A constitutive equation is required to close the system

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, 2015, 2016

Qualitative explanation of dilatancy effects

Differential motion of the fluid and solid phases

A crucial element :

Make it possible for the fluid to enter/escape the granular phase

Solid free surface ≠ fluid free surface !

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, JFM, 2016

Modeling of dilatancy effects

- Compression/dilatation of the solid phase :
 - $abla \cdot v = \dot{\gamma}\, an\psi$ Roux and Radjai, 1998
 - ψ : dilatancy angle, $\dot{\gamma}$: shear strain rate

 $an\psi = K(arphi - arphi_c^{eq})$ Pailha and Pouliquen, 2009

• Closure equation :
$$\nabla \cdot v = K \dot{\gamma} (\varphi - \varphi_c^{eq})$$

$$arphi < arphi_c^{eq}$$
 : compression $arphi > arphi_c^{eq}$: dilatation

• Impact of the dilatancy angle on the Coulomb friction force :

$$T_s^{\mathbf{x}z} = -\tan(\delta + \psi) \operatorname{sign}(v) T_s^{zz}$$

$$\delta_{\text{eff}}$$

Dilatation increases friction in addition to decrease of fluid pore pressure

Submarine granular column collapse

Simulation of laboratory experiments of Rondon et al., 2011

Submarine granular column collapse

Simulation and measurement of excess pore fluid pressure

Modeling of debris flows (grain/fluid)

Iverson, Denlinger; Denlinger, Iverson 2001, Iverson, George; George, Iverson 2014

Pitman and Le 2005, Pelanti et al. 2008, 2011

Modeling of debris flows (grain/fluid)

Iverson, Denlinger; Denlinger, Iverson 2001, Iverson, George; George, Iverson 2014

Pitman and Le 2005, Pelanti et al. 2008, 2011

Jackson's model

 φ : solid volume fraction, $~1-\varphi$: fluid volume fraction

Mass conservation :

*
$$\partial_t(\rho_s\varphi) + \nabla \cdot (\rho_s\varphi v) = 0$$

* $\partial_t(\rho_f(1-\varphi)) + \nabla \cdot (\rho_f(1-\varphi)u) = 0$

• Momentum conservation :

*
$$\rho_s \varphi(\partial_t v + (v \cdot \nabla) v) = -\nabla \cdot T_s - \varphi \nabla p_{f_m} + f + \rho_s \varphi \mathbf{g}$$

* $\rho_f (1 - \varphi)(\partial_t u + (u \cdot \nabla) u) = -\nabla \cdot T_{f_m} + \varphi \nabla p_{f_m} - f + \rho_f (1 - \varphi) \mathbf{g}$
 $T_s = p_s \operatorname{Id} + \widetilde{T}_s \qquad T_{f_m} = p_{f_m} \operatorname{Id} + \widetilde{T}_{f_m}$

Friction between the solid and fluid phases : $f = \beta(u - v)$

5 unknowns : arphi , v , u , p_s , p_{f_m} , 4 equations

A constitutive equation is required to close the system

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, 2015, 2016

Qualitative explanation of dilatancy effects

Differential motion of the fluid and solid phases

A crucial element :

Make it possible for the fluid to enter/escape the granular phase

Solid free surface ≠ fluid free surface !

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, JFM, 2016

Modeling of dilatancy effects

- Compression/dilatation of the solid phase :
 - $abla \cdot v = \dot{\gamma}\, an\psi$ Roux and Radjai, 1998
 - ψ : dilatancy angle, $\dot{\gamma}$: shear strain rate

 $an\psi = K(arphi - arphi_c^{eq})$ Pailha and Pouliquen, 2009

• Closure equation :
$$\nabla \cdot v = K \dot{\gamma} (\varphi - \varphi_c^{eq})$$

$$arphi < arphi_c^{eq}$$
 : compression $arphi > arphi_c^{eq}$: dilatation

• Impact of the dilatancy angle on the Coulomb friction force :

$$T_s^{\mathbf{x}z} = -\tan(\delta + \psi) \operatorname{sign}(v) T_s^{zz}$$

$$\delta_{\text{eff}}$$

Dilatation increases friction in addition to decrease of fluid pore pressure

Fluid pore pressure

in thin layer depth-averaged models

• From the fluid momentum conservation in the direction normal to the slope

$$\begin{split} & \varepsilon \rho_f (1-\varphi) (\partial_t u^z + u^{\mathbf{x}} \cdot \nabla_{\mathbf{x}} u^z + u^z \partial_z u^z) = \\ & -(1-\varphi) \partial_z p_{f_m} - g \cos \theta \rho_f (1-\varphi) - \beta (u^z - v^z) - \varepsilon \nabla_{\mathbf{x}} \cdot T_{f_m}^{\mathbf{x}z} \\ & p_{f_m} = \rho_f g \cos \theta (b + h_m + h_f - z) + p_{f_m}^e + O(\epsilon^2) \\ & \text{with} \quad p_{f_m}^e \equiv \frac{\bar{\beta}}{1-\bar{\varphi}} \int_z^{b+h_m} (u^z - v^z) (z') dz' \end{split}$$

using the dilatancy closure equation $\nabla \cdot v = K \dot{\gamma} (\varphi - \varphi_c^{eq})$

• Non-hydrostatic (excess) fluid pressure

$$(p_{f_m}^e)_{|b} = \frac{\bar{\beta}}{1 - \bar{\varphi}} h_m (\overline{u^{\mathbf{x}}} - \overline{v^{\mathbf{x}}}) \cdot \nabla_{\mathbf{x}} b - \frac{\bar{\beta}}{1 - \bar{\varphi}} \frac{h_m^2}{2} \left(\nabla_{\mathbf{x}} \cdot (\overline{u^{\mathbf{x}}} - \overline{v^{\mathbf{x}}}) + \frac{K\bar{\gamma}(\bar{\varphi} - \varphi_c^{\mathbf{eq}})}{1 - \bar{\varphi}} \right)$$

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, JFM, 2016

Equilibrium state and parameters

• Critical state :

$$\bar{\varphi}^{\infty} = \bar{\varphi}_{c}^{stat} - \frac{K_{2}}{K_{1}} (|\tan \theta| - \tan \delta),$$

$$\frac{\eta_{f} \bar{\dot{\gamma}}^{\infty}}{p_{s}|_{b}^{\infty}} = \frac{1}{K_{1}} (|\tan \theta| - \tan \delta).$$

Our model : \overline{O}_{0}^{0}

Pailha-Pouliquen model :

$$h_{m}^{\infty} = \frac{\varphi}{\bar{\varphi}^{\infty}} h_{m}^{0}, \qquad h_{m}^{\infty} = h_{m}^{0},$$

$$p_{s|b}^{\infty} = \bar{\varphi}^{\infty} h_{m}^{\infty} (\rho_{s} - \rho_{f}) g \cos \theta, \qquad p_{s|b}^{\infty} = \bar{\varphi}_{c}^{stat} h_{m}^{\infty} (\rho_{s} - \rho_{f}) g \cos \theta,$$

$$\overline{v^{\mathbf{x}}}^{\infty} = \frac{1}{3} h_{m}^{\infty} \bar{\gamma}^{\infty}. \qquad \overline{v^{\mathbf{x}}}^{\infty} = \frac{1}{3} h_{m}^{\infty} \bar{\gamma}^{\infty}.$$

• Parameters for the laboratory experiments of *Pailha et al.*, 2008 : $\rho_s = 2500 \text{ kg/m}^3, \quad \bar{\varphi}_c^{stat} = 0.582, \quad \delta = 22.5^\circ, \quad K_1 = 90.5, \quad K_2 = 25$ - $\eta_f = 96 \times 10^{-3} \text{ Pa} \cdot \text{s}, \quad \rho_f = 1041 \text{ kg/m}^3, \quad |\theta| = 25^\circ, \quad h_m^0 = 4.9 \text{ mm}$ - $\eta_f = 9.8 \times 10^{-3} \text{ Pa} \cdot \text{s}, \quad \rho_f = 1026 \text{ kg/m}^3, \quad |\theta| = 28^\circ, \quad h_m^0 = 6.1 \text{ mm}$

Boundary conditions

- At the free surface, for the fluid:
 - * no tension: $T_f N_X = 0$
 - * kinematic condition: $N_t + u_f \cdot N_X = 0$
- At the interface mixture/fluid:
 - * kinematic condition for the solid: $ilde{N}_t + v \cdot ilde{N}_X = 0$
 - * Rankine-Hugoniot (mass conservation) condition: $\tilde{N}_t + u_f \cdot \tilde{N}_X = (1 - \varphi^*)(\tilde{N}_t + u \cdot \tilde{N}_X) \equiv \mathcal{V}_f$
 - ****** Rankine-Hugoniot (momentum conservation) condition:

$$\rho_f \mathcal{V}_f(u - u_f) + (T_s + T_{f_m})\tilde{N}_X = T_f \tilde{N}_X$$

****** stress transfer condition from the energy balance:

$$T_s \tilde{N}_X = \left(\frac{\rho_f}{2} \left((u - u_f) \cdot \frac{\tilde{N}_X}{|\tilde{N}_X|} \right)^2 + \left((T_{f_m} \tilde{N}_X) \cdot \frac{\tilde{N}_X}{|\tilde{N}_X|^2} - p_{f_m} \right) \frac{\varphi^*}{1 - \varphi^*} \right) \tilde{N}_X$$

Navier friction condition for the fluid:

$$\left(\frac{T_{f_m} + T_f}{2}\tilde{N}_X\right)_\tau = -k_i(u_f - u)_\tau$$

Boundary conditions

- Bottom boundary conditions:
 - ****** No penetration condition:

 $u \cdot n = 0, \qquad v \cdot n = 0$

* Coulomb friction for the solid:

 $(T_s n)_{\tau} = -\tan \delta_{\text{eff}} \operatorname{sgn}(v)(T_s n) \cdot n$

Navier friction for the fluid:

$$(T_{f_m} n)_{\tau} = -k_b u$$

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, 2016

Our model in the uniform immersed configuration

$$\overline{u_f} = 0, \ h_m(t) + h_f(t, x) + x \tan \theta = cst$$

- Mass conservation :
 - * $\partial_t(\bar{\varphi}h_m) = 0$
 - * $\partial_t \bar{\varphi} = -\bar{\varphi} \bar{\Phi}$
- Momentum conservation :

*
$$\rho_s \bar{\varphi} \partial_t \overline{v^{\mathbf{x}}} = -\operatorname{sgn}(\overline{v^{\mathbf{x}}}) \frac{\tau_b}{h_m} + \bar{\beta}(\overline{u^{\mathbf{x}}} - \overline{v^{\mathbf{x}}}) - \bar{\varphi}(\rho_s - \rho_f)g\sin\theta$$

* $\rho_f(1 - \bar{\varphi})\partial_t \overline{u^{\mathbf{x}}} = \left(\frac{1}{2}\rho_f \mathcal{V}_f - k_b\right) \frac{\overline{u^{\mathbf{x}}}}{h_m} - \bar{\beta}(\overline{u^{\mathbf{x}}} - \overline{v^{\mathbf{x}}})$
with $\mathcal{V}_f = -h_m \bar{\Phi}$, $\tau_b = \tan \overline{\delta_{\text{eff}}} p_{s|b} + K_1 \eta_f \bar{\gamma}$
 $p_{s|b} = \bar{\varphi}(\rho_s - \rho_f)g\cos\theta h_m - (p_{f_m}^e)_{|b}$, $(p_{f_m}^e)_{|b} = -\frac{\bar{\beta}}{(1 - \bar{\varphi})^2} \frac{h_m^2}{2} \bar{\Phi}$
Closure related to dilatancy :

$$\bar{\Phi} = \bar{\dot{\gamma}} \tan \psi , \quad \tan \psi = K(\bar{\varphi} - \bar{\varphi}_c^{eq}), \quad \bar{\varphi}_c^{eq} = \bar{\varphi}_c^{stat} - K_2 \frac{\eta_f \gamma}{p_{s|b}}, \\ \bar{\dot{\gamma}} = 3 \frac{|\overline{v^{\mathbf{x}}}|}{h_m}, \quad \tan \overline{\delta_{\text{eff}}} = \tan \delta + \tan \psi$$

Simple tests on submarine granular flows

Simple tests on submarine granular flows

Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, JFM, 2016

Simple tests on submarine granular flows

Submarine granular column collapse

Simulation of laboratory experiments of Rondon et al., 2011

Submarine granular column collapse

Simulation and measurement of excess pore fluid pressure

ou

$$N_{\text{Sav}} = \frac{\rho_{\text{p}} \dot{\gamma}^2 d^2}{(\rho_{\text{p}} - \rho_{\text{f}})gH}$$

$$N_{\text{Bag}} = \frac{\phi \rho_{\text{p}} \dot{\gamma}^2 d^2}{(1 - \phi)\eta_{\text{f}} \dot{\gamma}}$$

$$N_{\text{Bag}} \sim I_{\text{pi}}^2 / I_{\text{v}}$$

Vertical velocity field and profiles

 $\theta = 0^{\circ}$

Significant vertical velocities (up to 50% of u)

Within the granular layer ...

partial fluidization model Mangeney et al., 2007

Critère de rupture – seuil de plasticité

Le modèle de Mohr-Coulomb repose sur le critère de rupture suivant. Le milieu cède au point P, s'il existe en ce point un plan repère par sa normale **n** selon lequel on a

 $|\tau| = \tan \delta \, \sigma_{\rm c}$

où τ et $\cdot \sigma$ sont les contraintes normale et tangentielle au plan **n**, et tan δ est le coefficient de friction effectif du materiau. Si l'on connait *a priori* la direction du plan de rupture, le critère de Mohr-Coulomb se ramène au problème du patin frottant sur un plan. En revanche, les choses peuvent se compliquer dans des géométries différentes pour lesquelles on ne connait pas *a priori* les directions de glissement.

Fonction de charge:
$$F_{\text{Coulomb}}(\sigma_1, \sigma_2, \sigma_3) \equiv \max \left\{ (\sigma_1 - \sigma_2)^2 - \sin \delta^2 (\sigma_1 + \sigma_2)^2, (\sigma_2 - \sigma_3)^2 - \sin \delta^2 (\sigma_2 + \sigma_3)^2, (\sigma_3 - \sigma_1)^2 - \sin \delta^2 (\sigma_3 + \sigma_1)^2 \right\}$$

 $F_{\text{Drucker}}(\sigma) = q^2 - (\sin \delta)^2 P^2 \text{ avec } P = \frac{1}{3} \text{tr}(\sigma), \text{ et } q = ||\tau|| = ||\sigma - P\mathbf{I}||$
ou $F_{\text{Drucker}}(\sigma_1, \sigma_2, \sigma_3) \equiv \frac{1}{6} \left((\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2) \right) - (\sin \delta)^2 \left(\frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \right)^2.$

Surface de plasticité dans l'espace des contraintes principales. (a) Critère de Mohr-Coulomb. (b) Critère de Drücker-Prager. (c) Section perpendiculaire à l'axe des cylindres.

Les observations montrent que la surface de plasticité dans la section des contraintes principales présente une forme arrondie plus proche de Drucker-Prager que de Mohr-Coulomb. La forme n'est pas exactement circulaire, et d'autres critères ont été proposés, notamment le critère de Lade (1977)

(a) Déformation prédite par le modèle de Mohr-Coulomb dans un triaxial. Déformation observée pour un milieu initialement lache (b) et initialement dense (c) (d'après Taylor, 1948).
2D granular flows over erodible bed : Experiments

Granular collapse over an erodible bed

 \Rightarrow Entrainment depends on mass availability, for a given angle θ

Critical angle : $\theta_c \simeq 12^\circ \simeq \theta_r/2$: above which erosion increases flow mobility

$$\frac{r_f}{h_0} = \frac{1}{\tan \delta - \tan \theta} + \gamma(\theta) \frac{h_i}{h_0}$$

 $\tan 23^\circ - \tan \theta$

Strong tests for erosion models !!

Strong implication for risk assessme

Mangeney et al., 2010

Within the granular layer ...

partial fluidization model Mangeney et al., 2007

Wave-like motion

Erodible bed

- Steep front over rigid and erodible bed
- Waves located behind the front

vertical motion that removes grains from the erodible bed

comparaison quantitative avec experiences de laboratoire :

- Effet de la guillotine
- Effet des bords
- Manque un effet : dilatance ??

Drucker- Praguer η = 1 Pa.s versus μ (*I*)

Very similar results with the variable and constant viscosity $\eta = 1$ Pa.s

μ (*I*) parameters

$$I = \frac{2 \| \boldsymbol{D} \| d}{\sqrt{p/\rho_s}}$$

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{1 + I_0/I}$$

Conclusion

- Drucker-Prager with a constant viscosity and $\mu(I)$ rheology reproduce **quantitatively** granular collapse experiments

Insight into flow dynamics

- Only the $\mu(I)$ rheology reproduces **qualitatively** the increase in runout when the thickness of the erodible bed increases
- Still to repoduce quantitatively erosion effects

A big challenge for application to natural landslides

• Derive from Drucker-Prager equations two layers Saint-Venant equations : a flowing layer over a static layer

Bayesian inversion of landslide characteristics

Bayesian inversion of landslide characteristics

Series of rockfalls and pyroclastic flows

Piton de la Fournaise, La Réunion

 $V = 1 - 10^3 \,\mathrm{m}^3$

Montserrat, Lesser Antilles $V = 10^2 - 10^6 \text{ m}^3$

Observation : seismology, photogrammetry

 $t_{\rm s} \approx t_{\rm f}$

Hibert et al., 2011, 2014, 2016

High frequency Detection, localization, monitoring

Power law: seismic energy versus duration

Regression lines and corresponding coefficients computed for each month

Power law: potential energy versus flow duration

 $\Delta E_{\rm p} \alpha t_f^{\beta a}$

with

 $\beta_a = 2$

• Analytical development for a rectangular mass on a flat slope

Mangeney et al., 2010

Numerical simulation of granular flows over real topography using the code SHALTOP *Mangeney et al.*, 2007

From seismic energy to rockfall volume

• Scaling laws Energy/Duration : $E_{\text{seismic}} \alpha t_s^{\beta}$ and $\Delta E_{\text{potential}} \alpha t_f^{\beta}$

• Cumulative volume from May 2007 to February 2008 : $V=1.85 \ 10^6 \ m^3$

Hibert et al., 2011, 2014, 2017

Detection, localization, monitoring

• Spatio-temporal distribution of rockfall characteristics

• Link with volcanic activity

Friction weakening makes it possible to reproduce seismic data

Levy et al. 2015

Friction weakening signature on seismic data

The parameters of the power law depend on the valley !

High frequency seismic data and flow dynamics

Seismic power fluctuations are related to the force variation that reflects the interaction of the flow with the topography

Experiments of acoustic emission

Impact and rolling of individual grains and granular flows

Energy partition (potential, acoustic, etc.) From acoustic emissions to grain/substrate properties

Conclusion

 Seismic signal
temporal change of the force applied by the landslide to the ground

• Low frequency force history + landslide simulation well constrain the geometry and volume of the mass and gives an estimate of the friction coefficient

Moretti et al., 2015a, 2015b

- High frequency seismic power correlates with the simulated force
- Signature of friction weakening on seismic data Levy et al. 2015, Yamada et al. 2015

Long period observed and simulated seismograms

Spatio-temporal change of rockfall activity

Comportement mécanique des écoulements gravitaires

Comportement physique et mécanique? Effet d'échelle?

Conclusion

- Seismic signal \Rightarrow information on the temporal evolution of the volcano stability
- Scaling laws between seismic energy and signal duration
- Transfer ratio of potential energy to seismic energy \Rightarrow volume = f (seismic energy)

 Near-field, long-period observations can discriminate between alternative scenarios for flow dynamics

• Estimation of the **basal friction** and **physical processes during the flow** can be inferred from simulation of the seismic signal

To do ...

Validation on well characterized events

• Systematic study of the **influence of the volume, topography, friction coefficient** on the simulated seismic signal

Coupling landslide and wave propagation models

Numerical simulation and inversion of landquakes

Low frequency direct or inverse approach

Time-dependent basal stress field applied on top of the terrain

$$\mathbf{T}_{x} = \rho g h \left(\cos \theta + \frac{\mathbf{u}_{h}^{t} \mathcal{H} \mathbf{u}_{h}}{g \cos^{2} \theta} \right) \left(\mu \frac{u_{X}}{\|\mathbf{u}\|}, \mu \frac{u_{Y}}{\|\mathbf{u}\|}, -1 \right)$$

Curvature effects

 X_{\bigstar}

Simulation of the Thurweiser landslide

Thurweiser rock avalanche, Italie September 2004

Sosio et al., 2008, Favreau et al., 2010

STS2 Data

 $(L_{\text{source-station}} = 24 \text{ km})$

For T > 15 s, $\lambda = cT \approx 45$ km

Simulation of the generated seismic waves

Curvature effects on the generated seismic waves

on the generated seismic signal

Friction coefficient and simulated seismic waves

Comparison between simulated and recorded seismic signal

Calibration of the friction coefficients

Comparaison with discrete element simulations Limits of the thin layer approximation

• Non-hydrostatic effets are important when *a* /

- New asymptotic developments including vertical accélération
- Description of the static/mobile transition in granular flows

Static layer

Models proposed in the literature : no physically relevant energy equation !

Bouchut, Fernandez-Nieto, Mangeney, Lagrée, 2008; Lusso, Mangeney, Bouchut, Ern, 2014

Mt Steller rock-ice avalanche and associated landquake

Alaska, September 2005

Recorded by 7 seismic stations from 37 km to 623 km

Simulation of the Mt Steller rock-ice avalanche

- The two scenarios well match the deposit area
- Mass accumulation at the front with erosion effects

Moretti et al., 2012

Simulation of the Mt Steller landquake

The scenario with erosion better reproduces the observed waveform

Conclusion

Numerical models: empirical tool to study natural flows

Calibrated on past events

prediction of the dynamics and deposit in the same geological context

First operational tools for hazard assessment

- Data on the dynamics : **seismology**
- More **physics** in the models : solid/fluid mixture, erosion/deposition ...

New equations to solve.....

Thank you !

Numerical modeling of erosion in granular flows

Mangeney et al., 2010

Morphological signature of flow processes

Gullies, Iceland

Gullies, Mars

2D granular flows over erodible bed : Experiments

Granular collapse over a rigid bed

Granular collapse over an erodible bed

2D granular flows over erodible bed : Simulations

The partial fluidization model : static grains

Pyroclastic flows, Lascar volcano, Chili

Discrete elements simulation

Flow law valid for both static and flowing grains??

$$\sigma_{ij} = \sigma_{ij}^{f} + \sigma_{ij}^{s} \qquad \left\{ \begin{array}{l} \sigma_{ij}^{f} & -\text{ flowing grains} \\ \sigma_{ij}^{s} & -\text{ static grains} \end{array} \right.$$

$$\sigma_{xy}^{f} = q(\rho) \sigma_{xy}$$
characterizes the **« state » of the granular matter**
$$\rho = \frac{\Sigma \text{ static contacts}}{\Sigma \text{ contacts}}$$

Aranson and Tsimring, 2002; Aranson et al., 2008

INLS, UC San Diego

Modeling of erosion processes

In agreement with experiments Pouliquen and Forterre, 2002, Mangeney et al., 2010, ...