

Numerical simulation of a depth-averaged Euler system and comparison with analytical solutions ANGE TEAM : INRIA - UPMC - CNRS - CEREMA

N. Aïssiouene, M-O. Bristeau, E. Godlewski, J. Sainte-Marie

Contents

- 1. Introduction
- 2. The non hydrostatic model
- 3. A prediction-correction scheme
- 4. Results
- 5. Conclusion and outlook

1. Introduction

The inviscid shallow water model

Incompressible Euler System:

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = G$$

$$\frac{\partial E}{\partial t} + \nabla \cdot (\mathbf{u}(E+p)) = 0$$

$$E = \frac{u^2 + w^2}{2} + gz$$

Kinematic boundary conditions

$$\frac{\partial \eta}{\partial t} + u_s \frac{\partial \eta}{\partial x} - w_s = 0$$
$$u_b \frac{\partial z_b}{\partial x} - w_b = 0$$

Boundary pressure $p^a = 0$

$$\overline{u}(x,t) = \frac{1}{H} \int_{z_b}^{\eta} u(x,z,t) dz$$

1. Introduction

The inviscid shallow water model

Incompressible hydrostatic Euler

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial u}{\partial t} + \frac{\partial u^{2}}{\partial x} + \frac{\partial uw}{\partial z} + \frac{\partial p}{\partial x} = 0$$

$$\frac{\partial w}{\partial t} + \frac{\partial wu}{\partial x} + \frac{\partial w^{2}}{\partial z} + \frac{\partial p}{\partial z} = -g$$
non-hydrostatic terms

Under the shallow water Assumption : $\epsilon = \frac{h}{I} \ll 1$

Approximation by the average

$$u(x,z,t)\approx \overline{u}(x,t)$$

Hydrostatic Pressure

$$\frac{\partial p}{\partial z} = -g$$

h,L: characteristic depth and length

Saint-Venant Equation

$$\frac{\partial H}{\partial t} + \frac{\partial H\overline{u}}{\partial x} = 0$$
$$\frac{\partial H\overline{u}}{\partial t} + \frac{\partial}{\partial x}(H\overline{u}^2 + g\frac{H^2}{2}) = -gH\frac{\partial z_b}{\partial x}$$

The Saint-Venant system

Many applications

- Fluvial flow
- Tsunami
- Dam break ..

Figure : Wave propagation

Figure : A dam break

Figure : A Tsunami

Figure : A mascaret

Figure : An hydraulic jump

Problematic : Need more complex model to better simulate phenomena with significant vertical acceleration and dispersion effects.

1. Introduction

A depth-averaged Euler system

Non-hydrostatic terms no more neglected Asymptotic approximation no more required

$$\begin{array}{l} \text{Euler system} \\ \varphi = \mathbbm{1}_{z_b \le z \le \eta} \end{array} \Rightarrow \qquad \begin{cases} \frac{\partial \varphi}{\partial t} + \frac{\partial \varphi u}{\partial x} + \frac{\partial \varphi w}{\partial z} &= 0 \\ \frac{\partial \varphi u}{\partial t} + \frac{\partial \varphi u^2}{\partial x} + \frac{\partial \varphi uw}{\partial z} + \varphi \frac{\partial p}{\partial x} &= 0 \\ \frac{\partial \varphi w}{\partial t} + \frac{\partial \varphi uw}{\partial x} + \frac{\partial \varphi w^2}{\partial z} + \varphi \frac{\partial p}{\partial z} &= -\varphi g \end{cases}$$

Depth Averaging

$$\langle f \rangle = \int_{z_b}^{\eta} f \, dz \qquad \Rightarrow$$

$$p=g(\eta-z)+p_{nh}$$

$$\frac{\partial}{\partial t} \langle \varphi \rangle + \frac{\partial}{\partial x} \langle \varphi u \rangle = 0$$

$$\frac{\partial}{\partial t} \langle \varphi u \rangle + \frac{\partial}{\partial x} \left(\langle \varphi u^2 \rangle + \langle \varphi p \rangle \right) = 0$$

$$\frac{\partial}{\partial t} \langle \varphi w \rangle + \frac{\partial}{\partial x} \langle \varphi u w \rangle = p_{nh|_{b}}$$

$$\frac{\partial}{\partial t} \langle \varphi z \rangle + \frac{\partial}{\partial x} \langle \varphi z u \rangle = \langle \varphi w \rangle$$

Closure relations needed

Closure relations

⇒ Energy balance:

$$\frac{\partial}{\partial t}\langle \varphi E\rangle + \frac{\partial}{\partial x}\langle \varphi u(E+p)\rangle = 0$$

⇒ Minimization of the Energy [Levermore(1997)]

$$\begin{split} \langle \varphi E \rangle &= \frac{\langle \varphi u^2 \rangle + \langle \varphi w^2 \rangle}{2} + \langle \varphi g z \rangle \geq \frac{\langle \varphi u \rangle^2 + \langle \varphi w \rangle^2}{2} + \langle \varphi g z \rangle \\ \varphi u &= \frac{\langle \varphi u \rangle}{\langle \varphi \rangle} \quad \varphi w = \frac{\langle \varphi w \rangle}{\langle \varphi \rangle} \end{split}$$

⇒ Closure relations:

$$\langle \varphi u^2 \rangle = \frac{\langle \varphi u \rangle^2}{\langle \varphi \rangle} \quad \langle \varphi u w \rangle = \frac{\langle \varphi u \rangle \langle \varphi w \rangle}{\langle \varphi \rangle} \quad \langle \varphi z u \rangle = \langle \varphi z \rangle \frac{\langle \varphi u \rangle}{\langle \varphi \rangle}$$

and,

$$p_{nh}|_b = 2\overline{p}_{nh}$$

REFERENCE:

An energy-consistent depth-averaged Euler system: derivation and properties. **M-O. Bristeau et al.** Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation. **J.** Sainte-Marie

The depth-averaged model

$$\frac{\partial H}{\partial t} + \frac{\partial H\overline{u}}{\partial x} = 0$$

$$\frac{\partial H\overline{u}}{\partial t} + \frac{\partial}{\partial x}(H\overline{u}^{2} + g\frac{H^{2}}{2} + H\overline{p}_{nh}) = -(gH + 2\overline{p}_{nh})\frac{\partial z_{b}}{\partial x}$$

$$\frac{\partial H\overline{w}}{\partial t} + \frac{\partial H\overline{wu}}{\partial x} = 2\overline{p}_{nh}$$

$$-\frac{H}{2}\frac{\partial H\overline{u}}{\partial x} + \frac{H\overline{u}}{2}\frac{\partial(H + 2z_{b})}{\partial x} = H\overline{w}$$

$$\frac{\partial \overline{E}}{\partial t} + \frac{\partial}{\partial x}(\overline{u}(\overline{E} + g\frac{H^{2}}{2} + H\overline{p}_{nh})) = 0$$

- Definition of the total pressure : $\overline{p} = \overline{p}_h + \overline{p}_{nh}$, $\overline{p}_h = g \frac{H}{2}$
- Saint Venant system + non-hydrostatic terms

nría

- An averaged equation of the momentum equation in z gives the equation in $H\overline{w}$

2. The non hydrostatic model

Comparison with other dispersive models

• Green-Naghdi with *z*_b = *Cste*

$$\begin{aligned} \frac{\partial H}{\partial t} &+ \frac{\partial}{\partial x} (H\overline{u}) = 0\\ \frac{\partial (H\overline{u})}{\partial t} &+ \frac{\partial}{\partial x} \left(H\overline{u}^2 + \frac{g}{2}H^2 + H\overline{p}_{gn} \right) = 0\\ \frac{\partial}{\partial t} (H\overline{w}) &+ \frac{\partial}{\partial x} (H\overline{u}\overline{w}) = \frac{3}{2}\overline{p}_{gn}\\ \overline{w} &= -\frac{H}{2}\frac{\partial\overline{u}}{\partial x} \end{aligned}$$

Energy balance

$$\frac{\partial \overline{E}_{gn}}{\partial t} + \frac{\partial}{\partial x}\overline{u}\left(\overline{E}_{gn} + H\overline{p}_{gn}\right) = 0$$
with $\overline{E}_{gn} = \frac{H}{2}\left(\overline{u}^2 + \frac{2}{3}\overline{w}^2\right) + \frac{g}{2}H^2$

See Dena Kazerani's Poster

A Prediction-correction scheme type

(Chorin-Temam)

completed with the incompressibility constraint $div_{sw}(U) = 0$ We denote the flux *F*:

$$F = \left(egin{array}{c} F_H \ F_{H\overline{u}} \ F_{H\overline{w}} \end{array}
ight)$$

A Prediction-correction scheme

$$\frac{U^{n+1/2} - U^n}{\Delta t} + \frac{\partial}{\partial x} F(U^n) = S_b^n$$
(1)

$$\frac{U^{n+1} - U^{n+1/2}}{\Delta t} + P^{n+1} = 0$$
 (2)

under the constraint written at the time t^{n+1} :

$$div_{SW}(U^{n+1}) \doteq -H\overline{w}^{n+1} - \frac{H^{n+1}}{2} \frac{\partial (H\overline{u})^{n+1}}{\partial x} + \frac{(H\overline{u})^{n+1}}{2} \frac{\partial (H^{n+1} + 2z_b)}{\partial x} = (\mathfrak{B})$$

Elliptic equation

Equation (3) with (2) gives:

$$-4H^2\frac{\partial^2 \overline{q}_{nh}}{\partial x^2} + \Lambda \overline{q}_{nh} = \frac{8\sqrt{H}}{\Delta t} div_{SW}(U^{n+1/2})$$

$$\overline{q}_{nh} = \sqrt{H}\overline{p}_{nh}$$
, $\Lambda = \Lambda(\frac{\partial^{j}H}{\partial x^{j}}, \frac{\partial^{j}z_{b}}{\partial x^{j}})$, $j = 1, 2$

N. Aïssiouene, M-O. Bristeau, E. Godlewski, J. Sainte-Marie – EGRIN 2014

Prediction step

nría

$$\frac{U^{n+1/2}-U^n}{\Delta t}+\frac{\partial}{\partial x}F(U^n) = S^n_b$$

 \Rightarrow Numerical scheme for the Saint Venant system with topography term

$$\begin{array}{rcl} H_i^{n+1/2} & = & H_i^n - \sigma(F_{H,i+1/2}^n - F_{H,i-1/2}^n) & \text{Kinetic Interpretation} \\ (H\overline{u})_i^{n+1/2} & = & (H\overline{u})_i^n - \sigma(F_{H\overline{u},i+1/2}^n - F_{H\overline{u},i-1/2}^n) & \text{Hydrostatic reconstruction} \end{array}$$

 \Rightarrow Numerical scheme for the transport equation of $H\overline{w}$

$$(H\overline{w})_i^{n+1/2} = (H\overline{w})_i^n - \sigma(F_{H\overline{w},i+1/2}^n - F_{H\overline{w},i-1/2}^n)$$

Correction step

• After computing \overline{p}_{nh}^{n+1}

$$\begin{aligned} H^{n+1} &= H^{n+1/2} \\ (H\overline{u})^{n+1} &= (H\overline{u})^{n+1/2} - \Delta t (\frac{\partial}{\partial x} (H\overline{p}_{nh})^{n+1} + 2\overline{p}_{nh}^{n+1} \frac{\partial z_b}{\partial x}) \\ (H\overline{w})^{n+1} &= (H\overline{w})^{n+1/2} + 2\Delta t \overline{p}_{nh}^{n+1} \end{aligned}$$

Discretisation of the source term and of Hp
_{nh} by a centered finite difference scheme

Properties of the scheme

Positivity of H

CFL condition of the shallow water model \Rightarrow Positivity of $H^{n+1/2}$ Splitting scheme $\Rightarrow H^{n+1} = H^{n+1/2}$

The lake at rest

Lake at rest \Leftrightarrow $H\overline{u} = 0$ and $H + z_b = Cste$ Elliptic equation $\Rightarrow \overline{p}_{nh} = 0$ Verified by the hydrostatic part with the hydrostatic reconstruction.

 \Rightarrow We conserve properties of the Saint-Venant system

The elliptic equation

Elliptic equation

$$-4H^{2}\frac{\partial^{2}\overline{q}_{nh}}{\partial x^{2}} + \Lambda \overline{q}_{nh} = \frac{8\sqrt{H}}{\Delta t}div_{SW}(U)$$

- \Rightarrow Difficulty to analyse the sign of Λ
 - Flat bottom

$$\Lambda = 16 - 2H \frac{\partial^2 H}{\partial x^2} + 3(\frac{\partial H}{\partial x})^2$$

Variable bottom

$$\Lambda = 16\left(1 + \left(\frac{\partial z_b}{\partial x}\right)^2\right) - 8H\frac{\partial^2 z_b}{\partial x^2} + 16\frac{\partial H}{\partial x}\frac{\partial z_b}{\partial x} - 2H\frac{\partial^2 H}{\partial x^2} + 3\left(\frac{\partial H}{\partial x}\right)^2$$

3. A prediction-correction scheme

Positivity of the total pressure, Behaviour when $H \rightarrow 0$

Hydrostatic model : Positivity of the pressure.

$$\overline{p} = \overline{p}_h = g \frac{H}{2}$$

Non-hydrostatic model : How to ensure the positivity?

$$\overline{p} = \overline{p}_h + \overline{p}_{nh} = g \frac{H}{2} + \overline{p}_{nh}$$

 \Rightarrow Solution 1

nnín

In the elliptic solver, not allow the scheme to degenerate:

$$H_{\epsilon} = max(H, H_{\epsilon})$$

$$-4H_{\epsilon}^{2}\frac{\partial^{2}\overline{q}_{nh}}{\partial x^{2}}+\Lambda\overline{q}_{nh}=\frac{8\sqrt{H}}{\Delta t}div_{SW}(U)$$

 \Rightarrow Solution 2

Transition to hydrostatic model

$$\begin{aligned} \frac{\partial \tilde{\rho} H \overline{w}}{\partial t} &+ \frac{\partial \tilde{\rho} H \overline{w} \overline{u}}{\partial x} &= 2 \overline{\rho}_{nh} \\ \frac{\partial \tilde{\rho} H}{\partial t} &+ \frac{\partial \tilde{\rho} H \overline{u}}{\partial x} &= \frac{\tilde{\rho}_M H - \tilde{\rho} H}{\tau} \\ \tilde{\rho}_M &= \begin{cases} 1 \text{ if } p > p_\epsilon \\ 0 \text{ else} \end{cases} \end{aligned}$$

Propagation of a solitary wave

$$H = H_0 + asech(\frac{x - c_0 t}{l})^2$$

4. Results

Propagation of a solitary wave

Figure : H and Pnh over the time

A stationary quasi-analytic solution

Stationary solution : $H\overline{u} = Q_0 = Cte$, H = H(x)

$$\overline{p}_{nh} = \frac{Q_0}{2} \frac{\partial \overline{w}}{\partial x}$$
$$H\overline{w} = \frac{Q_0}{2} \frac{\partial}{\partial x} (H + 2z_b)$$
$$\frac{\partial}{\partial x} (\frac{Q_0^2}{H} + H\overline{p}) = -(gH + 2\overline{p}_{nh}) \frac{\partial z_b}{\partial x}$$

• Choosing $w(x) \Rightarrow \text{EDO to solve}$

Figure : a particular analytic solution

Results - Stationary solution

Initial condition: $\eta = Cste$ Boundary conditions: Left : analytical debit q_0 Right : analytical η

4. Results

Results - Comparison with hydrostatic simulation

Ínría

Résults - Dispersive effect

Ínría

Conclusion and outlook

- · Properties of the scheme
 - Stability
 - Concistency
 - Convergence
- Validation
 - Analytic solutions
 - Observations
- Error approximation
- · Boundary conditions
- 2D,3D model

Innía

Thank you !

(nría_