

An introduction to data assimilation

Eric Blayo University of Grenoble and INRIA Data assimilation, the science of compromises

Context characterizing a (complex) system and/or forecasting its evolution, given several heterogeneous and uncertain sources of information
Modèle

Widely used for geophysical fluids (meteorology, oceanography, atmospheric chemistry. . .), but also in other numerous domains (e.g. glaciology, nuclear energy, medicine, agriculture planning. . .)

Closely linked to inverse methods, control theory, estimation theory, filtering. . .

Data assimilation, the science of compromises

Numerous possible aims:

- \triangleright Forecast: estimation of the present state (initial condition)
- \triangleright Model tuning: parameter estimation
- \blacktriangleright Inverse modeling: estimation of parameter fields
- \triangleright Data analysis: re-analysis (model $=$ interpolation operator)
- \triangleright OSSE: optimization of observing systems

Data assimilation, the science of compromises

Its application to Earth sciences generally raises a number of difficulties, some of them being rather specific:

- \blacktriangleright non linearities
- \blacktriangleright huge dimensions
- \blacktriangleright poor knowledge of error statistics
- \triangleright non reproducibility (each experiment is unique)
- \triangleright operational forecast (computations must be performed in a limited time)

Objectives for these two lectures

- \triangleright introduce data assimilation from several points of view
- \blacktriangleright give an overview of the main methods
- \triangleright detail the basic ones and highlight their pros and cons
- \blacktriangleright introduce some current research problems

Objectives for these two lectures

- \triangleright introduce data assimilation from several points of view
- \blacktriangleright give an overview of the main methods
- \triangleright detail the basic ones and highlight their pros and cons
- \triangleright introduce some current research problems

Outline

- 1. Data assimilation for dummies: a simple model problem
- 2. Generalization: linear estimation theory, variational and sequential approaches
- 3. Variational algorithms Adjoint techniques
- 4. Reduced order Kalman filters
- 5. Some current research tracks

Some references

- 1. BLAYO E. and M. NODET, 2012: Introduction à l'assimilation de données variationnelle. Lecture notes for UJF Master course on data assimilation. https://team.inria.fr/moise/files/2012/03/Methodes-Inverses-Var-M2-math-2009.pdf
- 2. Bocquet M., 2014 : Introduction aux principes et méthodes de l'assimilation de données en géophysique. Lecture notes for ENSTA - ENPC data assimilation course. http://cerea.enpc.fr/HomePages/bocquet/Doc/assim-mb.pdf
- 3. BOCQUET M., E. COSME AND E. BLAYO (EDS.), 2014: Advanced Data Assimilation for Geosciences. Oxford University Press.
- 4. BOUTTIER F. and P. Courtier, 1999: Data assimilation, concepts and methods. Meteorological training course lecture series ECMWF, European Center for Medium range Weather Forecast, Reading, UK. http://www.ecmwf.int/newsevents/training/rcourse notes/DATA ASSIMILATION/ ASSIM CONCEPTS/Assim concepts21.html
- 5. Cohn S., 1997: An introduction to estimation theory. Journal of the Meteorological Society of Japan, **75**, 257-288.
- 6. Daley R., 1993: Atmospheric data analysis. Cambridge University Press.
- 7. Evensen G., 2009: Data assimilation, the ensemble Kalman filter. Springer.
- 8. KALNAY E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge University Press.
- 9. LAHOZ W., B. KHATTATOV AND R. MENARD (EDS.), 2010: Data assimilation. Springer.
- 10. Rodgers C., 2000: Inverse methods for atmospheric sounding. World Scientific, Series on Atmospheric Oceanic and Planetary Physics.
- 11. Tarantola A., 2005: Inverse problem theory and methods for model parameter estimation. SIAM. http://www.ipgp.fr/~tarantola/Files/Professional/Books/InverseProblemTheory.pdf

A simple but fundamental example

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 7/61

Two different available measurements of a single quantity. Which estimation for its true value ? \longrightarrow least squares approach

Two different available measurements of a single quantity. Which estimation for its true value ? \longrightarrow least squares approach

Example 2 obs $y_1 = 19^oC and $y_2 = 21$ ^oC of the (unknown) present$ temperature x.

• Let
$$
J(x) = \frac{1}{2} [(x - y_1)^2 + (x - y_2)^2]
$$

\n• Min_x $J(x) \longrightarrow \hat{x} = \frac{y_1 + y_2}{2} = 20^{\circ} \text{C}$

Observation operator If \neq units: $y_1 = 66.2$ °F and $y_2 = 69.8$ °F

• Let
$$
H(x) = \frac{9}{5}x + 32
$$

\n• Let $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (H(x) - y_2)^2]$

$$
\triangleright \ \mathsf{Min}_x \ J(x) \quad \longrightarrow \hat{x} = 20^{\circ} \mathsf{C}
$$

Observation operator If \neq units: $y_1 = 66.2$ °F and $y_2 = 69.8$ °F

► Let
$$
H(x) = \frac{9}{5}x + 32
$$

\n► Let $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (H(x) - y_2)^2]$
\n► Min_x $J(x) \longrightarrow \hat{x} = 20^\circ \text{C}$

Drawback # 1: if observation units are inhomogeneous $y_1 = 66.2^{\circ}$ F and $y_2 = 21^{\circ}$ C

•
$$
J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (x - y_2)^2] \longrightarrow \hat{x} = 19.47^{\circ} \text{C}
$$
!!

Observation operator If \neq units: $y_1 = 66.2$ °F and $y_2 = 69.8$ °F

► Let
$$
H(x) = \frac{9}{5}x + 32
$$

\n► Let $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (H(x) - y_2)^2]$
\n► Min_x $J(x) \longrightarrow \hat{x} = 20^\circ \text{C}$

Drawback $# 1:$ if observation units are inhomogeneous $y_1 = 66.2^{\circ}$ F and $y_2 = 21^{\circ}$ C $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (x - y_2)^2] \longrightarrow \hat{x} = 19.47^{\circ} \text{C}$!!

Drawback # 2: if observation accuracies are inhomogeneous If y_1 is twice more accurate than y_2 , one should obtain $\hat{x} = \frac{2y_1 + y_2}{2}$ $\frac{+y_2}{3} = 19.67^{\circ}$ C

$$
\longrightarrow J \text{ should be } J(x) = \frac{1}{2} \left[\left(\frac{x - y_1}{1/2} \right)^2 + \left(\frac{x - y_2}{1} \right)^2 \right]
$$

1

Reformulation in a **probabilistic framework**:

- \triangleright the goal is to estimate a scalar value x
- \blacktriangleright y_i is a realization of a random variable Y_i
- ▶ One is looking for an estimator (i.e. a r.v.) \hat{X} that is
	- **Iinear**: $\hat{X} = \alpha_1 Y_1 + \alpha_2 Y_2$ (in order to be simple)
	- **In unbiased**: $E(\hat{X}) = x$ (it seems reasonable)
	- **of minimal variance**: $\text{Var}(\hat{X})$ minimum (optimal accuracy)

 \rightarrow BLUE (Best Linear Unbiased Estimator)

Reminder: covariance of two random variables Let X and Y two random variables.

► Covariance: $Cov(X, Y) = E [(X – E(X)) (Y – E(Y))]$ $= E(XY) - E(X)E(Y)$

 $Cov(X, X) = Var(X)$

Linear correlation coefficient: $\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$

Property: X and Y independent \implies Cov(X, Y) = 0 The reciprocal is generally false.

Let $V = v + e$ with

Et	$r_i = x + e_i$	with	
Hypotheses	$E(\varepsilon_i) = 0$	$(i = 1, 2)$	unbiased measurement devices
► Var(ε_i) = σ_i^2	$(i = 1, 2)$	known accuracies	
▶ Cov($\varepsilon_1, \varepsilon_2$) = 0	independent measurement errors		

Let
$$
Y_i = x + \varepsilon_i
$$
 with
\nHypotheses
\n $E(\varepsilon_i) = 0$ $(i = 1, 2)$ unbiased measurement devices
\n $\triangleright \text{Var}(\varepsilon_i) = \sigma_i^2$ $(i = 1, 2)$ known accuracies
\n $\triangleright \text{Cov}(\varepsilon_1, \varepsilon_2) = 0$ independent measurement errors

Then, since $\hat{X} = \alpha_1 Y_1 + \alpha_2 Y_2 = (\alpha_1 + \alpha_2)x + \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2$:

$$
\blacktriangleright \ \ E(\hat{X}) = (\alpha_1 + \alpha_2)X + \alpha_1 E(\varepsilon_1) + \alpha_2 E(\varepsilon_2) \implies \alpha_1 + \alpha_2 = 1
$$

 $L + V = v + e$ with

Hypotheses	★	$E(\varepsilon_i) = 0$	($i = 1, 2$)	unbiased measurement devices
★	$Var(\varepsilon_i) = \sigma_i^2$	($i = 1, 2$)	known accuracies	
★	$Cov(\varepsilon_1, \varepsilon_2) = 0$	independent measurement errors		

Then, since $\hat{X} = \alpha_1 Y_1 + \alpha_2 Y_2 = (\alpha_1 + \alpha_2)x + \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2$:

$$
\mathbf{E}(\hat{X}) = (\alpha_1 + \alpha_2)x + \alpha_1 E(\varepsilon_1) + \alpha_2 E(\varepsilon_2) \implies \alpha_1 + \alpha_2 = 1
$$

\n
$$
\mathbf{Var}(\hat{X}) = E[(\hat{X} - x)^2] = E[(\alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2)^2] = \alpha_1^2 \sigma_1^2 + (1 - \alpha_1)^2 \sigma_2^2
$$

$$
\frac{\partial}{\partial \alpha_1} = 0 \Longrightarrow \alpha_1 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}
$$

In summary:

BLUE

$$
\hat{X} = \frac{\frac{1}{\sigma_1^2} Y_1 + \frac{1}{\sigma_2^2} Y_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}
$$

Its accuracy:
$$
\left[\text{Var}(\hat{X}) \right]^{-1} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}
$$
 accuracies are added
go to general case

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 14/61

In summary:

BLUE

$$
\hat{X} = \frac{\frac{1}{\sigma_1^2} Y_1 + \frac{1}{\sigma_2^2} Y_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}
$$

Its accuracy:
$$
\left[\text{Var}(\hat{X}) \right]^{-1} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}
$$
 accuracies are added
go to general case

Remarks:

The hypothesis Cov $(\varepsilon_1, \varepsilon_2) = 0$ is not compulsory at all.

$$
\mathsf{Cov}(\varepsilon_1, \varepsilon_2) = c \longrightarrow \alpha_i = \frac{\sigma_i^2 - c}{\sigma_1^2 + \sigma_2^2 - 2c}
$$

Statistical hypotheses on the two first moments of $\varepsilon_1, \varepsilon_2$ lead to statistical results on the two first moments of \hat{X} .

Variational equivalence

This is equivalent to the problem:

Minimize
$$
J(x) = \frac{1}{2} \left[\frac{(x - y_1)^2}{\sigma_1^2} + \frac{(x - y_2)^2}{\sigma_2^2} \right]
$$

Variational equivalence

This is equivalent to the problem:

Minimize
$$
J(x) = \frac{1}{2} \left[\frac{(x - y_1)^2}{\sigma_1^2} + \frac{(x - y_2)^2}{\sigma_2^2} \right]
$$

Remarks:

- \triangleright This answers the previous problems of sensitivity to inhomogeneous units and insensitivity to inhomogeneous accuracies
- \triangleright This gives a rationale for choosing the norm for defining J

$$
\sum_{\text{convexity}}^{\text{J}''(\hat{x})} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} = \underbrace{[\text{Var}(\hat{x})]^{-1}}{\text{accuracy}}
$$

Model problem

Alternative formulation: background + observation

If one considers that y_1 is a prior (or background) estimate x_b for x, and $y_2 = y$ is an independent observation, then:

and

Model problem

Interpretation

If the background error and the observation error are uncorrelated: $E(e^o e^b) \, = \, 0, \,$ then one can show that the estimation error and the innovation are uncorrelated:

$$
E(e^a(Y-X_b))=0
$$

 \rightarrow orthogonal projection for the scalar product $\langle Z_1, Z_2 \rangle = E(Z_1 Z_2)$

One can also consider x as a realization of a r.v. X , and be interested in the pdf $p(X|Y)$.

Reminder: Bayes theorem

Let A and B two events.

► Conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Example:

$$
P(\text{heart card } | \text{ red card}) = \frac{1}{2} = \frac{P(\text{heart card } \cap \text{ red card})}{P(\text{red card})} = \frac{8/32}{16/32}
$$

$$
\blacktriangleright \text{ Bayes theorem: } P(A|B) = \frac{P(B|A) P(A)}{P(B)}
$$

Thus, if X and Y are two random variables:

$$
P(X = x | Y = y) = \frac{P(Y = y | X = x) P(X = x)}{P(Y = y)}
$$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 19/61

One can also consider x as a realization of a r.v. X , and be interested in the pdf $p(X|Y)$.

Several optimality criteria

- **In minimum variance**: \hat{X}_{MV} such that the spread around it is minimal $\longrightarrow \hat{X}_{MV} = E(X|Y)$
- **maximum a posteriori**: most probable value of X given Y $\longrightarrow \hat{X}_{MAP}$ such that $\frac{\partial p(X|Y)}{\partial X} = 0$

naximum likelihood: \hat{X}_{ML} that maximizes $p(Y|X)$

- \blacktriangleright Based on the Bayes rule: $P(X = x | Y = y) = \frac{P(Y = y | X = x) P(X = x)}{P(Y = y)}$
- requires additional hypotheses on prior pdf for X and for $Y|X$

 \triangleright In the Gaussian case, these estimations coincide with the BLUE

Back to our example: observations y_1 and y_2 of an unknown value x.

The simplest approach: maximum likelihood (no prior on X)

Likelihood function: $\mathcal{L}(x) = dP(Y_1 = y_1 \text{ and } Y_2 = y_2 | X = x)$

One is looking for $\hat{x}_{ML} =$ Argmax $\mathcal{L}(x)$ maximum likelihood estimation

$$
\mathcal{L}(x) = \prod_{i=1}^{2} dP(Y_i = y_i | X = x) = \prod_{i=1}^{2} \frac{1}{\sqrt{2\pi} \sigma_i} e^{-\frac{(y_i - x)^2}{2\sigma_i^2}}
$$

$$
\begin{aligned} \text{Argmax } \mathcal{L}(x) &= \text{Argmin } \left(-\ln \mathcal{L}(x) \right) \\ &= \text{Argmin } \frac{1}{2} \left[\frac{(x - y_1)^2}{\sigma_1^2} + \frac{(x - y_2)^2}{\sigma_2^2} \right] \end{aligned}
$$

Hence
$$
\hat{x}_{ML} = \frac{\frac{1}{\sigma_1^2} y_1 + \frac{1}{\sigma_2^2} y_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}
$$

BLUE again

(because of Gaussian hypothesis)

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 22/61

Model problem: synthesis

Data assimilation methods are often split into two families: variational methods and statistical methods.

- \triangleright Variational methods: minimization of a cost function (least squares approach)
- \triangleright Statistical methods: algebraic computation of the BLUE (with hypotheses on the first two moments), or approximation of pdfs (with hypotheses on the pdfs) and computation of the MAP estimator
- \triangleright There are strong links between those approaches, depending on the case (linear ? Gaussian ?)

Model problem: synthesis

Data assimilation methods are often split into two families: variational methods and statistical methods.

- \triangleright Variational methods: minimization of a cost function (least squares approach)
- \triangleright Statistical methods: algebraic computation of the BLUE (with hypotheses on the first two moments), or approximation of pdfs (with hypotheses on the pdfs) and computation of the MAP estimator
- \triangleright There are strong links between those approaches, depending on the case (linear ? Gaussian ?)

Theorem

If you have understood this previous stuff, you have (almost) understood everything on data assimilation.

Generalization: variational approach

Generalization: arbitrary number of unknowns and observations

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$

Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 25/61

Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

If
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}
$$
 and $\mathbf{y} = \begin{pmatrix} \text{ an observation of } \frac{x_1 + x_2}{2} \\ \text{ an observation of } x_4 \end{pmatrix}$
then $H(\mathbf{x}) = \mathbf{H}\mathbf{x}$ with $\mathbf{H} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

E. Blayo - An introduction to data assimilation **Ecole GDR Egrin 2014** 26/61

Generalization: arbitrary number of unknowns and observations

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$

Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Cost function: $J(\mathbf{x}) = \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||^2$ with $||.||$ to be chosen.

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 27/61

Reminder: norms and scalar products

$$
\mathbf{u} = \left(\begin{array}{c} u_1 \\ \vdots \\ u_n \end{array}\right) \in \mathbf{R}^n
$$

Euclidian norm: $\|\mathbf{u}\|^2 = \mathbf{u}^T \mathbf{u} = \sum^n u_i^2$ $i=1$

Associated scalar product:
$$
(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v} = \sum_{i=1}^n u_i v_i
$$

 Generalized norm: let **^M** a symmetric positive definite matrix **M**-norm: $\|\mathbf{u}\|_{\mathbf{M}}^2 = \mathbf{u}^T \mathbf{M} \ \mathbf{u} = \sum_{i=1}^n \sum_{j=1}^n m_{ij} \ u_i u_j$ $i=1$ $j=1$

 Δ ssociated scalar product: $({\bf u},{\bf v})_{\bf M} = {\bf u}^{\mathcal{T}}{\bf M}\;{\bf v} = \sum_{i}^{n}\sum_{j}^{n}m_{ij}\,u_{i}v_{j}$ $i=1$ $j=1$

Generalization: arbitrary number of unknowns and observations

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$

Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Cost function: $J(\mathbf{x}) = \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||^2$ with $||.||$ to be chosen.

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 29/61

Generalization: arbitrary number of unknowns and observations

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbf{R}^n
$$

Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbf{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Cost function: $J(\mathbf{x}) = \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||^2$ with $||.||$ to be chosen.

Remark

(Intuitive) necessary (but not sufficient) condition for the existence of a unique minimum:

$$
p\geq n
$$

Formalism "background value $+$ new observations"

$$
z = \left(\begin{array}{c} x_b \\ y \end{array}\right) \begin{array}{c} \longleftarrow \text{background} \\ \longleftarrow \text{new observations} \end{array}
$$

The cost function becomes:

$$
J(\mathbf{x}) = \frac{1}{2} \frac{\|\mathbf{x} - \mathbf{x}_b\|_b^2}{J_b} + \frac{1}{2} \frac{\|H(\mathbf{x}) - \mathbf{y}\|_o^2}{J_o}
$$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 30/61

Formalism "background value $+$ new observations"

$$
\mathbf{z} = \left(\begin{array}{c} \mathbf{x}_b \\ \mathbf{y} \end{array}\right) \begin{array}{c} \leftarrow \text{background} \\ \leftarrow \text{ new observations} \end{array}
$$

The cost function becomes:

$$
J(\mathbf{x}) = \frac{1}{2} \frac{\|\mathbf{x} - \mathbf{x}_b\|_b^2}{J_b} + \frac{1}{2} \frac{\|H(\mathbf{x}) - \mathbf{y}\|_o^2}{J_o}
$$

The necessary condition for the existence of a unique minimum ($p \ge n$) is automatically fulfilled.

If the problem is time dependent

 \triangleright Observations are distributed in time: $y = y(t)$

 \blacktriangleright The observation cost function becomes:

$$
J_o(\mathbf{x}) = \frac{1}{2} \sum_{i=0}^N \|H_i(\mathbf{x}(t_i)) - \mathbf{y}(t_i)\|_o^2
$$

If the problem is time dependent

- \triangleright Observations are distributed in time: $y = y(t)$
- \blacktriangleright The observation cost function becomes:

$$
J_o(\mathbf{x}) = \frac{1}{2} \sum_{i=0}^{N} ||H_i(\mathbf{x}(t_i)) - \mathbf{y}(t_i)||_o^2
$$

► There is a model describing the evolution of **x**: $\frac{d\mathbf{x}}{dt} = M(\mathbf{x})$ with $x(t = 0) = x_0$. Then *J* is often no longer minimized w.r.t. **x**, but w.r.t. x_0 only, or to some other parameters.

$$
J_o(\mathbf{x}_0) = \frac{1}{2} \sum_{i=0}^{N} \|H_i(\mathbf{x}(t_i)) - \mathbf{y}(t_i)\|_o^2 = \frac{1}{2} \sum_{i=0}^{N} \|H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)\|_o^2
$$

If the problem is time dependent

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and M are linear then J_0 is quadratic.

E. Blayo - An introduction to data assimilation **Ecole GDR** Egrin 2014 33/61

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

- If H and M are linear then J_o is quadratic.
- \blacktriangleright However it generally does not have a unique minimum, since the number of observations is generally less than the size of x_0 (the problem is underdetermined: $p < n$).

Example: let $(x_1^t, x_2^t) = (1, 1)$ and $y = 1.1$ an observation of $\frac{1}{2}(x_1 + x_2)$.

$$
J_o(x_1, x_2) = \frac{1}{2} \left(\frac{x_1 + x_2}{2} - 1.1 \right)^2
$$

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

- If H and M are linear then J_0 is quadratic.
- \blacktriangleright However it generally does not have a unique minimum, since the number of observations is generally less than the size of x_0 (the problem is underdetermined).
- Adding J_b makes the problem of minimizing $J = J_o + J_b$ well posed.

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

Example: the Lorenz system (1963)

$$
\begin{cases}\n\frac{dx}{dt} = \alpha(y - x) \\
\frac{dy}{dt} = \beta x - y - xz \\
\frac{dz}{dt} = -\gamma z + xy\n\end{cases}
$$

http://www.chaos-math.org

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

Example: the Lorenz system (1963)

$$
\begin{cases}\n\frac{dx}{dt} = \alpha(y - x) \\
\frac{dy}{dt} = \beta x - y - xz \\
\frac{dz}{dt} = -\gamma z + xy\n\end{cases}
$$

$$
J_o(y_0) = \frac{1}{2} \sum_{i=0}^{N} (x(t_i) - x_{obs}(t_i))^2 dt
$$

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_0 is no longer quadratic.

Adding J_b makes it "more quadratic" (J_b is a regularization term), but $J = J_0 + J_b$ may however have several local minima.

A fundamental remark before going into minimization aspects

Once J is defined (i.e. once all the ingredients are chosen: control variables, norms, observations. . .), the problem is entirely defined. Hence its solution.

The "physical" (i.e. the most important) part of data assimilation lies in the definition of J.

The rest of the job, i.e. minimizing J , is "only" technical work.

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse Let **M** a $p \times n$ matrix, with rank n, and $\mathbf{b} \in \mathbb{R}^p$. (hence $p > n$) Let $J(x) = ||Mx - b||^2 = (Mx - b)^T (Mx - b)$. J is minimum for $\hat{\mathbf{x}} = \mathsf{M}^{+}\mathbf{b}$, where $\mathsf{M}^{+} = (\mathsf{M}^{T}\mathsf{M})^{-1}\mathsf{M}^{T}$ (generalized, or Moore-Penrose, inverse).

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let **M** a $p \times n$ matrix, with rank *n*, and **b** $\in \mathbb{R}^p$.

Let
$$
J(\mathbf{x}) = ||\mathbf{M}\mathbf{x} - \mathbf{b}||^2 = (\mathbf{M}\mathbf{x} - \mathbf{b})^T (\mathbf{M}\mathbf{x} - \mathbf{b}).
$$

 J is minimum for $\hat{\mathbf{x}} = \mathsf{M}^{+}\mathbf{b}$, where $\mathsf{M}^{+} = (\mathsf{M}^{T}\mathsf{M})^{-1}\mathsf{M}^{T}$ (generalized, or Moore-Penrose, inverse).

(hence $p \ge n$)

Corollary: with a generalized norm

Let **N** a $p \times p$ symmetric definite positive matrix.

Let
$$
J_1(\mathbf{x}) = ||\mathbf{M}\mathbf{x} - \mathbf{b}||_N^2 = (\mathbf{M}\mathbf{x} - \mathbf{b})^T \mathbf{N} (\mathbf{M}\mathbf{x} - \mathbf{b}).
$$

 J_1 is minimum for $\hat{\mathbf{x}} = (\mathbf{M}^T \mathbf{N} \mathbf{M})^{-1} \mathbf{M}^T \mathbf{N} \mathbf{b}$.

Link with data assimilation

In the case of a linear, time independent, data assimilation problem:

$$
J_o(\mathbf{x}) = \frac{1}{2} \left\| \mathbf{H} \mathbf{x} - \mathbf{y} \right\|_o^2 = \frac{1}{2} \left(\mathbf{H} \mathbf{x} - \mathbf{y} \right)^T \mathbf{R}^{-1} (\mathbf{H} \mathbf{x} - \mathbf{y})
$$

Optimal estimation in the linear case: J_0 only min $\min_{\mathbf{x} \in \mathbb{R}^n} J_o(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}$

[go to statistical approach](#page-71-0)

Link with data assimilation

With the formalism "background value $+$ new observations":

$$
J(\mathbf{x}) = J_b(\mathbf{x}) + J_o(\mathbf{x})
$$

\n
$$
= \frac{1}{2} ||\mathbf{x} - \mathbf{x}_b||_b^2 + \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||_o^2
$$

\n
$$
= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
= (\mathbf{M}\mathbf{x} - \mathbf{b})^T \mathbf{N} (\mathbf{M}\mathbf{x} - \mathbf{b}) = ||\mathbf{M}\mathbf{x} - \mathbf{b}||_0^2
$$

\nwith $\mathbf{M} = \begin{pmatrix} \mathbf{I}_n \\ \mathbf{H} \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} \mathbf{x}_b \\ \mathbf{y} \end{pmatrix} \quad \mathbf{N} = \begin{pmatrix} \mathbf{B}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}^{-1} \end{pmatrix}$

Link with data assimilation

With the formalism "background value $+$ new observations":

$$
J(\mathbf{x}) = J_b(\mathbf{x}) + J_o(\mathbf{x})
$$

\n
$$
= \frac{1}{2} ||\mathbf{x} - \mathbf{x}_b||_b^2 + \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||_o^2
$$

\n
$$
= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
= (\mathbf{M}\mathbf{x} - \mathbf{b})^T \mathbf{N} (\mathbf{M}\mathbf{x} - \mathbf{b}) = ||\mathbf{M}\mathbf{x} - \mathbf{b}||_0^2
$$

\nwith $\mathbf{M} = \begin{pmatrix} I_n \\ \mathbf{H} \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} \mathbf{x}_b \\ \mathbf{y} \end{pmatrix}$ $\mathbf{N} = \begin{pmatrix} \mathbf{B}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}^{-1} \end{pmatrix}$

Optimal estimation in the linear case: $J_b + J_o$

$$
\hat{\mathbf{x}} = \mathbf{x}_b + \underbrace{(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}}_{\text{gain matrix}} \underbrace{(\mathbf{y} - \mathbf{H} \mathbf{x}_b)}_{\text{innovation vector}}
$$

 ${\sf Remark:}$ The gain matrix also reads ${\sf BH}^{\sf T}({\sf H}{\sf BH}^{\sf T}+{\sf R})^{-1}$ (Sherman-Morrison-Woodbury formula) [go to statistical approach](#page-76-0)

Given the size of n and p, it is generally impossible to handle explicitly **H**, **B** and **R**. So the direct computation of the gain matrix is impossible.

Example 1 even in the linear case (for which we have an explicit expression for $\hat{\mathbf{x}}$), the computation of \hat{x} is performed using an optimization algorithm.

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$
 Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$
 Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Statistical framework:

▶ **y** is a realization of a random vector **Y**

Reminder: random vectors and covariance matrices

 X_1

 \setminus

 X_n

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

► Random vector: **X** =

where each X_i is a random variable

 $\mathbf{C} = (\text{Cov}(X_i, X_j))_{1 \leq i,j \leq n} = E\left([\mathbf{X} - E(\mathbf{X})] [\mathbf{X} - E(\mathbf{X})]^T \right)$

on the diagonal: $C_{ii} = \text{Var}(X_i)$

 \blacktriangleright Property: A covariance matrix is symmetric positive semidefinite. (definite if the r.v. are linearly independent)

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$
 Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Statistical framework:

- **► y** is a realization of a random vector **Y**
- ▶ One is looking for the BLUE, i.e. a r.v. \hat{X} that is
	- **Finear:** $\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y}$ with size(\mathbf{A}) = (n, p)
	- \blacktriangleright unbiased: $E(\hat{\mathbf{X}}) = \mathbf{x}$
	- **of minimal variance:**

$$
\text{Var}(\hat{\mathbf{X}}) = \sum_{i=1}^{n} \text{Var}(\hat{X}_i) = \text{Tr}(\text{Cov}(\hat{\mathbf{X}})) \text{ minimum}
$$

Hypotheses Inear observation operator: $H(x) = Hx$ **I** Let **Y** = $Hx + \varepsilon$ with ε random vector in \mathbb{R}^p $E(\varepsilon) = 0$ unbiased measurement devices $\mathbf{C}\circ\mathbf{C}(\varepsilon) = E(\varepsilon \varepsilon^T) = \mathbf{R}$ known accuracies and covariances

Hypotheses Inear observation operator: $H(x) = Hx$ **I** Let **Y** = $Hx + \varepsilon$ with ε random vector in \mathbb{R}^p $E(\varepsilon) = 0$ unbiased measurement devices $\mathbf{C}\circ\mathbf{C}(\varepsilon) = E(\varepsilon \varepsilon^T) = \mathbf{R}$ known accuracies and covariances

BLUE:

Linear:
$$
\hat{\mathbf{X}} = \mathbf{AY}
$$
 with $\mathbf{A}(n, p)$

► unbiased:
$$
E(\hat{\mathbf{X}}) = E(\mathbf{A}H\mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon}) = \mathbf{A}H\mathbf{x} + \mathbf{A}E(\boldsymbol{\varepsilon}) = \mathbf{A}H\mathbf{x}
$$

So: $E(\hat{\mathbf{X}}) = \mathbf{x} \Longleftrightarrow \mathbf{A}H = I_n$.

Hypotheses Inear observation operator: $H(x) = Hx$ **I** Let **Y** = $Hx + \varepsilon$ with ε random vector in \mathbb{R}^p $E(\varepsilon) = 0$ unbiased measurement devices $\mathsf{Cov}(\varepsilon) = E(\varepsilon \varepsilon^T) = \mathsf{R}$ known accuracies and covariances **BLUE**:

Linear:
$$
\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y}
$$
 with $\mathbf{A}(n, p)$

► unbiased:
$$
E(\hat{\mathbf{X}}) = E(\mathbf{A}H\mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon}) = \mathbf{A}H\mathbf{x} + \mathbf{A}E(\boldsymbol{\varepsilon}) = \mathbf{A}H\mathbf{x}
$$

So: $E(\hat{\mathbf{X}}) = \mathbf{x} \Longleftrightarrow \mathbf{A}H = I_n$.

Remark:
$$
AH = I_n \Longrightarrow \ker H = \{0\} \Longrightarrow \text{rank}(H) = n
$$

Since size(H) = (p, n) , this implies $n \leq p$ (again !)

BLUE:

• minimal variance: min $Tr(Cov(\hat{\mathbf{X}}))$

$$
\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y} = \mathbf{A}\mathbf{H}\mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon} = \mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon}
$$

$$
\begin{array}{ll}\n\text{Cov}(\hat{\mathbf{X}}) & = E\left([\hat{\mathbf{X}} - E(\hat{\mathbf{X}})][\hat{\mathbf{X}} - E(\hat{\mathbf{X}})]^T \right) \\
& = \mathbf{A}E(\varepsilon \varepsilon^T) \mathbf{A}^T = \mathbf{A} \mathbf{R} \mathbf{A}^T\n\end{array}
$$

Find **A** that minimizes $\text{Tr}(\textbf{A}\textbf{R}\textbf{A}^T)$ under the constraint $\textbf{A}\textbf{H} = \textbf{I}_n$

BLUE:

• minimal variance: min $Tr(Cov(\hat{\mathbf{X}}))$

$$
\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y} = \mathbf{A}\mathbf{H}\mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon} = \mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon}
$$

$$
\begin{array}{ll}\n\text{Cov}(\hat{\mathbf{X}}) & = E\left([\hat{\mathbf{X}} - E(\hat{\mathbf{X}})][\hat{\mathbf{X}} - E(\hat{\mathbf{X}})]^T \right) \\
& = \mathbf{A}E(\varepsilon \varepsilon^T) \mathbf{A}^T = \mathbf{A} \mathbf{R} \mathbf{A}^T\n\end{array}
$$

Find **A** that minimizes $\text{Tr}(\textbf{A}\textbf{R}\textbf{A}^T)$ under the constraint $\textbf{A}\textbf{H} = \textbf{I}_n$

Gauss-Markov theorem

$$
\mathbf{A} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}
$$

BLUE:

• minimal variance: min $Tr(Cov(\hat{\mathbf{X}}))$

$$
\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y} = \mathbf{A}\mathbf{H}\mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon} = \mathbf{x} + \mathbf{A}\boldsymbol{\varepsilon}
$$

$$
\begin{array}{ll}\n\text{Cov}(\hat{\mathbf{X}}) & = E\left([\hat{\mathbf{X}} - E(\hat{\mathbf{X}})][\hat{\mathbf{X}} - E(\hat{\mathbf{X}})]^T \right) \\
& = \mathbf{A}E(\varepsilon \varepsilon^T) \mathbf{A}^T = \mathbf{A} \mathbf{R} \mathbf{A}^T\n\end{array}
$$

Find **A** that minimizes $\text{Tr}(\textbf{A}\textbf{R}\textbf{A}^T)$ under the constraint $\textbf{A}\textbf{H} = \textbf{I}_n$

Gauss-Markov theorem

$$
\mathbf{A} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}
$$

 $\mathsf{T}\mathsf{his}$ also leads to $\mathsf{C}\mathsf{ov}(\hat{\mathsf{X}}) = (\mathsf{H}^{\mathsf{T}}\mathsf{R}^{-1}\mathsf{H})^{-1}$

Link with the variational approach

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{Y} \quad \text{ with } \text{Cov}(\hat{\mathbf{X}}) = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

[go to variational approach](#page-56-0)

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{Y} \text{ with } \text{Cov}(\hat{\mathbf{X}}) = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

go to variational approach

Variational approach in the linear case

$$
J_o(\mathbf{x}) = \frac{1}{2} ||\mathbf{H}\mathbf{x} - \mathbf{y}||_o^2 = \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
\min_{\mathbf{x} \in \mathbf{R}^n} J_o(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}
$$

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{Y} \text{ with } \text{Cov}(\hat{\mathbf{X}}) = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

go to variational approach

Variational approach in the linear case

$$
J_o(\mathbf{x}) = \frac{1}{2} ||\mathbf{H}\mathbf{x} - \mathbf{y}||_o^2 = \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
\min_{\mathbf{x} \in \mathbf{R}^n} J_o(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}
$$

Remarks

 \blacktriangleright The statistical approach rationalizes the choice of the norm in the variational approach.

$$
\left[\text{Cov}(\hat{\mathbf{X}})\right]^{-1} = \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} = \underbrace{\text{Hess}(J_o)}_{\text{convexity}}
$$
\n
$$
\sum_{\substack{\text{is a}\text{ccuracy}\\\text{E. Blayo - An introduction to data assimilation}\\\text{Ecole GDR Egrin 2014}}\n\qquad\n\text{S0/61}\n\qquad\n\text{Lovila}
$$

Statistical approach: formalism "background value $+$ new observations"

$$
Z = \left(\begin{array}{c} X_b \\ Y \end{array}\right) \begin{array}{c} \longleftarrow \text{background} \\ \longleftarrow \text{ new observations} \end{array}
$$

Let $X_b = x + \varepsilon_b$ and $Y = Hx + \varepsilon_a$

Hypotheses:

- $E(\varepsilon_b) = 0$ unbiased background
	- $E(\varepsilon_o) = 0$ unbiased measurement devices
- \triangleright Cov(ε_b , ε_a) = 0 independent background and observation errors
- \triangleright Cov(ε_b) = **B** et Cov(ε_a) = **R** known accuracies and covariances

This is again the general BLUE framework, with

$$
Z = \begin{pmatrix} X_b \\ Y \end{pmatrix} = \begin{pmatrix} I_n \\ H \end{pmatrix} x + \begin{pmatrix} \varepsilon_b \\ \varepsilon_o \end{pmatrix} \text{ and } Cov(\varepsilon) = \begin{pmatrix} B & 0 \\ 0 & R \end{pmatrix}
$$

Statistical approach: formalism "background value $+$ new observations"

Statistical approach: BLUE $\hat{\mathbf{X}} = \mathbf{X}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$ (**Y** – $\mathbf{H} \mathbf{X}_b$) example and gain matrix innovation vector $\text{with } \left[\text{Cov}(\hat{\mathbf{X}})\right]^{-1} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}$ [−]¹**H** accuracies are added [go to model problem](#page-19-0)

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = \mathbf{X}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{Y} - \mathbf{H} \mathbf{X}_b)
$$

 $\mathsf{with}\ \mathsf{Cov}(\hat{\mathsf{X}}) = (\mathsf{B}^{-1} + \mathsf{H}^{\mathsf{T}}\mathsf{R}^{-1}\mathsf{H})^{-1}$ [go to variational approach](#page-57-0)

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = \mathbf{X}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{Y} - \mathbf{H} \mathbf{X}_b)
$$

with
$$
\mathsf{Cov}(\hat{\mathbf{X}}) = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

[go to variational approach](#page-57-0)

Variational approach in the linear case

$$
J(\mathbf{x}) = \frac{1}{2} ||\mathbf{x} - \mathbf{x}_b||_b^2 + \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||_o^2
$$

\n
$$
= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
\min_{\mathbf{x} \in \mathbf{R}^n} J(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = \mathbf{x}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}_b)
$$

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = \mathbf{X}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{Y} - \mathbf{H} \mathbf{X}_b)
$$

with
$$
\mathsf{Cov}(\hat{\mathbf{X}}) = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

[go to variational approach](#page-57-0)

Variational approach in the linear case

$$
J(\mathbf{x}) = \frac{1}{2} ||\mathbf{x} - \mathbf{x}_b||_b^2 + \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||_b^2
$$

\n
$$
= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
\min_{\mathbf{x} \in \mathbf{R}^n} J(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = \mathbf{x}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}_b)
$$

Same remarks as previously

In The statistical approach rationalizes the choice of the norms for J_0 and J_b in the variational approach.

$$
\sum \underbrace{\left[\text{Cov}(\hat{\mathbf{X}}) \right]^{-1}}_{\text{accuracy}} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} = \underbrace{\text{Hess}(J)}_{\text{convexity}}
$$

 D ynamical system: $\mathbf{x}^t(t_{k+1}) = \mathsf{M}(t_k, t_{k+1})\mathbf{x}^t(t_k) + \mathbf{e}(t_k)$

- \blacktriangleright $\mathbf{x}^t(t_k)$ true state at time t_k
- \blacktriangleright **M**(t_k , t_{k+1}) model assumed linear between t_k and t_{k+1}
- \blacktriangleright **e**(t_k) model error at time t_k

At every observation time t_k , we have an observation \mathbf{v}_k and a model forecast $\mathbf{x}^f(t_k)$. The BLUE can be applied:

$$
\mathbf{x}^t(t_{k+1}) = \mathbf{M}(t_k, t_{k+1}) \mathbf{x}^t(t_k) + \mathbf{e}(t_k)
$$

Hypotheses

- \triangleright **e**(t_k) is unbiased, with covariance matrix \mathbf{Q}_k
- \triangleright **e**(t_k) and **e**(t_l) are independent ($k \neq l$)
- **I** Unbiased observation y_k , with error covariance matrix R_k
- ► **and analysis error** $**x**^a(t_k) **x**^t(t_k)$ **are independent**

Kalman filter (Kalman and Bucy, 1961)

Initialization: **x** $\mathbf{a}(t_0)$ = \mathbf{x}_0 approximate initial state $\mathbf{P}^{\mathsf{a}}(t_0)$ = \mathbf{P}_0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

 $\mathbf{x}^f(t_{k+1}) = \mathbf{M}(t_k, t_{k+1}) \mathbf{x}^a(t_k)$ Forecast $P^{f}(t_{k+1})$ = $M(t_{k}, t_{k+1})P^{a}(t_{k})M^{T}(t_{k}, t_{k+1}) + Q_{k}$

$$
\mathbf{x}^{a}(t_{k+1}) = \mathbf{x}^{f}(t_{k+1}) + \mathbf{K}_{k+1} [\mathbf{y}_{k+1} - \mathbf{H}_{k+1}\mathbf{x}^{f}(t_{k+1})] \quad \text{BLE}
$$
\n
$$
\mathbf{K}_{k+1} = \mathbf{P}^{f}(t_{k+1})\mathbf{H}_{k+1}^{T} [\mathbf{H}_{k+1}\mathbf{P}^{f}(t_{k+1})\mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1}]^{-1}
$$
\n
$$
\mathbf{P}^{a}(t_{k+1}) = \mathbf{P}^{f}(t_{k+1}) - \mathbf{K}_{k+1}\mathbf{H}_{k+1}\mathbf{P}^{f}(t_{k+1})
$$

where exponents ^f and ^a stand respectively for *forecast* and analysis.

Equivalence with the variational approach

If \mathbf{H}_k and $\mathbf{M}(t_k, t_{k+1})$ are linear, and if the model is perfect $(\mathbf{e}_k = 0)$, then the Kalman filter and the variational method minimizing

 $J(x) = \frac{1}{2} (x - x_0)^T P_0^{-1} (x - x_0) + \frac{1}{2} \sum_{k=0}^{N}$ $k=0$ $({\bf H}_{\bf k} {\bf M}(t_0, t_k) {\bf x} - {\bf y}_k)^T {\bf R}_k^{-1}({\bf H}_{\bf k} {\bf M}(t_0, t_k) {\bf x} - {\bf y}_k)$ lead to the same solution at $t = t_N$.

In summary

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 58/61

In summary

variational approach least squares minimization (non dimensional terms)

- \blacktriangleright no particular hypothesis
- \blacktriangleright either for stationary or time dependent problems
- If M and H are linear, the cost function is quadratic: a unique solution if $p > n$
- \triangleright Adding a background term ensures this property.
- If things are non linear, the approach is still valid. Possibly several minima

statistical approach

- \blacktriangleright hypotheses on the first two moments
- ► time independent + H linear + $p \ge n$: BLUE (first two moments)
- ighthrow time dependent $+$ M and H linear: Kalman filter (based on the BLUE)
- In hypotheses on the pdfs: Bayesian approach (pdf) + ML or MAP estimator

In summary

The statistical approach gives a rationale for the choice of the norms, and gives an estimation of the uncertainty.

time independent problems if H is linear, the variational and the statistical approaches lead to the same solution (provided $\|.\|_b$ is based on \mathbf{B}^{-1} and $\|.\|_o$ is based on $\mathbf{R}^{-1})$

time dependent problems if H and M are linear, if the model is perfect, both approaches lead to the same solution at final time.

Common main methodological difficulties

- \triangleright Non linearities: J non quadratic / what about Kalman filter ?
- ► Huge dimensions $[\mathbf{x}] = \mathcal{O}(10^6 10^9)$: minimization of J / management of huge matrices
- ▶ Poorly known error statistics: choice of the norms / **B**, **R**, **Q**
- \triangleright Scientific computing issues (data management, code efficiency, parallelization...)

−→ NEXT LECTURE

