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Data assimilation, the science of compromises
Context characterizing a (complex) system and/or forecasting its

evolution, given several heterogeneous and uncertain
sources of information

Widely used for geophysical fluids (meteorology, oceanography,
atmospheric chemistry. . . ), but also in other numerous
domains (e.g. glaciology, nuclear energy, medicine,
agriculture planning. . . )

Closely linked to inverse methods, control theory, estimation theory,
filtering. . .
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Data assimilation, the science of compromises

Numerous possible aims:
I Forecast: estimation of the present state (initial condition)
I Model tuning: parameter estimation
I Inverse modeling: estimation of parameter fields
I Data analysis: re-analysis (model = interpolation operator)
I OSSE: optimization of observing systems
I . . .
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Data assimilation, the science of compromises

Its application to Earth sciences generally raises a number of difficulties,
some of them being rather specific:

I non linearities
I huge dimensions
I poor knowledge of error statistics
I non reproducibility (each experiment is unique)
I operational forecast (computations must be performed in a limited

time)
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Objectives for these two lectures

I introduce data assimilation from several points of view
I give an overview of the main methods
I detail the basic ones and highlight their pros and cons
I introduce some current research problems

Outline
1. Data assimilation for dummies: a simple model problem
2. Generalization: linear estimation theory, variational and sequential

approaches
3. Variational algorithms - Adjoint techniques
4. Reduced order Kalman filters
5. Some current research tracks
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A simple but fundamental
example
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Model problem: least squares approach

Two different available measurements of a single quantity. Which
estimation for its true value ? −→ least squares approach

Example 2 obs y1 = 19◦C and y2 = 21◦C of the (unknown) present
temperature x .

I Let J(x) = 1
2
[
(x − y1)

2 + (x − y2)
2]

I Minx J(x) −→ x̂ =
y1 + y2

2 = 20◦C
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Model problem: least squares approach
Observation operator If 6= units: y1 = 66.2◦F and y2 = 69.8◦F

I Let H(x) = 9
5 x + 32

I Let J(x) = 1
2
[
(H(x)− y1)

2 + (H(x)− y2)
2]

I Minx J(x) −→ x̂ = 20◦C

Drawback # 1: if observation units are inhomogeneous
y1 = 66.2◦F and y2 = 21◦C

I J(x) = 1
2
[
(H(x)− y1)

2 + (x − y2)
2] −→ x̂ = 19.47◦C !!

Drawback # 2: if observation accuracies are inhomogeneous
If y1 is twice more accurate than y2, one should obtain x̂ =

2y1 + y2
3 = 19.67◦C

−→ J should be J(x) = 1
2

[(
x − y1

1/2

)2
+

(
x − y2

1

)2
]
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Model problem: statistical approach

Reformulation in a probabilistic framework:
I the goal is to estimate a scalar value x

I yi is a realization of a random variable Yi

I One is looking for an estimator (i.e. a r.v.) X̂ that is
I linear: X̂ = α1Y1 + α2Y2 (in order to be simple)
I unbiased: E (X̂ ) = x (it seems reasonable)
I of minimal variance: Var(X̂ ) minimum (optimal accuracy)

−→ BLUE (Best Linear Unbiased Estimator)
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Model problem: statistical approach

Let Yi = x + εi with

Hypotheses
I E (εi) = 0 (i = 1, 2) unbiased measurement devices
I Var(εi) = σ2

i (i = 1, 2) known accuracies
I Cov(ε1, ε2) = 0 independent measurement errors
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Reminder: covariance of two random variables
Let X and Y two random variables.

� Covariance: Cov(X ,Y ) = E [(X − E (X )) (Y − E (Y ))]
= E (XY )− E (X )E (Y )

Cov(X ,X ) = Var(X )

� Linear correlation coefficient: ρ(X ,Y ) =
Cov(X ,Y )

σX σY

� Property: X and Y independent =⇒ Cov(X ,Y ) = 0

The reciprocal is generally false.
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Model problem: statistical approach

Let Yi = x + εi with

Hypotheses
I E (εi) = 0 (i = 1, 2) unbiased measurement devices
I Var(εi) = σ2

i (i = 1, 2) known accuracies
I Cov(ε1, ε2) = 0 independent measurement errors

Then, since X̂ = α1Y1 + α2Y2 = (α1 + α2)x + α1ε1 + α2ε2 :
I E (X̂ ) = (α1 + α2)x + α1E (ε1) + α2E (ε2) =⇒ α1 + α2 = 1
I Var(X̂ ) = E

[
(X̂ − x)2

]
= E

[
(α1ε1 + α2ε2)

2] = α2
1σ

2
1 +(1−α1)

2σ2
2

∂

∂α1
= 0 =⇒ α1 =

σ2
2

σ2
1 + σ2

2
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Model problem: statistical approach
In summary:

BLUE

X̂ =

1
σ2

1
Y1 +

1
σ2

2
Y2

1
σ2

1
+

1
σ2

2

Its accuracy:
[
Var(X̂ )

]−1
=

1
σ2

1
+

1
σ2

2
accuracies are added

go to general case

Remarks:
I The hypothesis Cov(ε1, ε2) = 0 is not compulsory at all.

Cov(ε1, ε2) = c −→ αi =
σ2

j −c
σ2

1+σ
2
2−2c

I Statistical hypotheses on the two first moments of ε1, ε2 lead to
statistical results on the two first moments of X̂ .
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Model problem: statistical approach

Variational equivalence
This is equivalent to the problem:

Minimize J(x) = 1
2

[
(x − y1)

2

σ2
1

+
(x − y2)

2

σ2
2

]

Remarks:
I This answers the previous problems of sensitivity to inhomogeneous

units and insensitivity to inhomogeneous accuracies
I This gives a rationale for choosing the norm for defining J

I J ′′(x̂)︸ ︷︷ ︸
convexity

=
1
σ2

1
+

1
σ2

2
= [Var(x̂)]−1︸ ︷︷ ︸

accuracy
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Model problem

Alternative formulation: background + observation

If one considers that y1 is a prior (or background) estimate xb for x , and
y2 = y is an independent observation, then:

J(x) = 1
2
(x − xb)

2

σ2
b︸ ︷︷ ︸

Jb

+
1
2
(x − y)2

σ2
o︸ ︷︷ ︸

Jo

and

x̂ =

1
σ2

b
xb +

1
σ2

o
y

1
σ2

b
+

1
σ2

o

= xb +
σ2

b
σ2

b + σ2
o︸ ︷︷ ︸

gain

(y − xb)︸ ︷︷ ︸
innovation
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Model problem

Interpretation

If the background error and the observation
error are uncorrelated: E (eoeb) = 0, then
one can show that the estimation error and
the innovation are uncorrelated:

E (ea(Y − Xb)) = 0

→ orthogonal projection for the scalar prod-
uct < Z1,Z2 >= E (Z1Z2)
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Model problem: Bayesian approach
One can also consider x as a realization of a r.v. X , and be interested in
the pdf p(X |Y ).
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Reminder: Bayes theorem
Let A and B two events.

� Conditional probability: P(A|B) =
P(A ∩ B)

P(B)

Example:
P(heart card | red card) = 1

2 =
P(heart card ∩ red card)

P(red card) =
8/32

16/32

� Bayes theorem: P(A|B) =
P(B|A)P(A)

P(B)

Thus, if X and Y are two random variables:

P(X = x |Y = y) = P(Y = y |X = x)P(X = x)
P(Y = y)
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Model problem: Bayesian approach
One can also consider x as a realization of a r.v. X , and be interested in
the pdf p(X |Y ).

Several optimality criteria
I minimum variance: X̂MV such that the spread around it is minimal

−→ X̂MV = E (X |Y )

I maximum a posteriori: most probable value of X given Y
−→ X̂MAP such that ∂p(X |Y )

∂X = 0

I maximum likelihood: X̂ML that maximizes p(Y |X )

I Based on the Bayes rule:
P(X = x |Y = y) = P(Y = y |X = x)P(X = x)

P(Y = y)
I requires additional hypotheses on prior pdf for X and for Y |X
I In the Gaussian case, these estimations coincide with the BLUE
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Model problem: Bayesian approach

Back to our example: observations y1 and y2 of an unknown value x .

The simplest approach: maximum likelihood (no prior on X )

Hypotheses:
I Yi ↪→ N (X , σ2

i ) unbiased, known accuracies + known pdf
I Cov(Y1,Y2) = 0 independent measurement errors

Likelihood function: L(x) = dP(Y1 = y1 and Y2 = y2 |X = x)

One is looking for x̂ML = Argmax L(x) maximum likelihood estimation
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Model problem: Bayesian approach

L(x) =
2∏

i=1
dP(Yi = yi |X = x) =

2∏
i=1

1√
2π σi

e
− (yi −x)2

2σ2
i

Argmax L(x) = Argmin (− lnL(x))

= Argmin 1
2

[
(x − y1)

2

σ2
1

+
(x − y2)

2

σ2
2

]

Hence x̂ML =

1
σ2

1
y1 +

1
σ2

2
y2

1
σ2

1
+

1
σ2

2

BLUE again
(because of Gaussian hypothesis)

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 22/61



Model problem: synthesis

Data assimilation methods are often split into two families: variational
methods and statistical methods.

I Variational methods: minimization of a cost function (least squares
approach)

I Statistical methods: algebraic computation of the BLUE (with
hypotheses on the first two moments), or approximation of pdfs (with
hypotheses on the pdfs) and computation of the MAP estimator

I There are strong links between those approaches, depending on the
case (linear ? Gaussian ?)

Theorem
If you have understood this previous stuff, you have (almost) understood
everything on data assimilation.
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Generalization:
variational approach
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp
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Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

If x =


x1
x2
x3
x4

 and y =

(
an observation of x1+x2

2
an observation of x4

)

then H(x) = Hx with H =

 1
2

1
2 0 0

0 0 0 1
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Cost function: J(x) = 1
2 ‖H(x)− y‖2 with ‖.‖ to be chosen.
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Reminder: norms and scalar products

u =

 u1
...

un

 ∈ IRn

� Euclidian norm: ‖u‖2 = uT u =
n∑

i=1
u2

i

Associated scalar product: (u, v) = uT v =
n∑

i=1
ui vi

� Generalized norm: let M a symmetric positive definite matrix

M-norm: ‖u‖2
M = uT M u =

n∑
i=1

n∑
j=1

mij ui uj

Associated scalar product: (u, v)M = uT M v =
n∑

i=1

n∑
j=1

mij ui vj
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Cost function: J(x) = 1
2 ‖H(x)− y‖2 with ‖.‖ to be chosen.

Remark
(Intuitive) necessary (but not sufficient) condition for the existence of a
unique minimum:

p ≥ n
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Formalism “background value + new observations”

z =

(
xb
y

)
←− background
←− new observations

The cost function becomes:

J(x) = 1
2 ‖x− xb‖2

b︸ ︷︷ ︸
Jb

+
1
2 ‖H(x)− y‖2

o︸ ︷︷ ︸
Jo

The necessary condition for the existence of a unique minimum (p ≥ n)
is automatically fulfilled.
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If the problem is time dependent

I Observations are distributed in time: y = y(t)

I The observation cost function becomes:

Jo(x) =
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o

I There is a model describing the evolution of x: dx
dt = M(x) with

x(t = 0) = x0. Then J is often no longer minimized w.r.t. x, but
w.r.t. x0 only, or to some other parameters.

Jo(x0) =
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o =
1
2

N∑
i=0
‖Hi(M0→ti (x0))− y(ti)‖2

o
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If the problem is time dependent

J(x0) =
1
2 ‖x0 − xb

0‖2
b︸ ︷︷ ︸

background term Jb

+
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o︸ ︷︷ ︸
observation term Jo
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and M are linear then Jo is quadratic.

I However it generally does not have a unique minimum, since the
number of observations is generally less than the size of x0 (the
problem is underdetermined: p < n).

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2).

Jo(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and M are linear then Jo is quadratic.
I However it generally does not have a unique minimum, since the

number of observations is generally less than the size of x0 (the
problem is underdetermined).

I Adding Jb makes the problem of minimizing J = Jo + Jb well posed.

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2). Let (xb
1 , xb

2 ) = (0.9, 1.05)

J(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2

︸ ︷︷ ︸
Jo

+
1
2
[
(x1 − 0.9)2 + (x2 − 1.05)2]︸ ︷︷ ︸

Jb

−→ (x∗1 , x∗2 ) = (0.94166..., 1.09166...)
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)

dy
dt = βx − y − xz

dz
dt = −γz + xy
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Uniqueness of the minimum ?
J(x0) = Jb(x0)+Jo(x0) =

1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)

dy
dt = βx − y − xz

dz
dt = −γz + xy

Jo(y0) =
1
2

N∑
i=0

(x(ti)− xobs(ti))
2 dt
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

I Adding Jb makes it “more quadratic” (Jb is a regularization term),
but J = Jo + Jb may however have several local minima.

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 38/61



Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

I Adding Jb makes it “more quadratic” (Jb is a regularization term),
but J = Jo + Jb may however have several local minima.

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 38/61



A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control
variables, norms, observations. . . ), the problem is entirely defined. Hence
its solution.

The “physical” (i.e. the most important) part of data
assimilation lies in the definition of J .

The rest of the job, i.e. minimizing J , is “only” technical work.
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Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse
Let M a p × n matrix, with rank n, and b ∈ IRp. (hence p ≥ n)

Let J(x) = ‖Mx− b‖2 = (Mx− b)T (Mx− b).

J is minimum for x̂ = M+b , where M+ = (MT M)−1MT

(generalized, or Moore-Penrose, inverse).

Corollary: with a generalized norm
Let N a p × p symmetric definite positive matrix.

Let J1(x) = ‖Mx− b‖2
N = (Mx− b)T N (Mx− b).

J1 is minimum for x̂ = (MT NM)−1MT N b.
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Link with data assimilation

In the case of a linear, time independent, data assimilation problem:

Jo(x) =
1
2 ‖Hx− y‖2

o =
1
2 (Hx− y)T R−1(Hx− y)

Optimal estimation in the linear case: Jo only

min
x∈IRn

Jo(x) −→ x̂ = (HT R−1H)−1HT R−1 y

go to statistical approach
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Link with data assimilation
With the formalism “background value + new observations”:

J(x) = Jb(x) + Jo(x)
=

1
2 ‖x− xb‖2

b +
1
2 ‖H(x)− y‖2

o

=
1
2 (x− xb)

T B−1(x− xb) +
1
2 (Hx− y)T R−1(Hx− y)

= (Mx− b)T N (Mx− b) = ‖Mx− b‖2
N

with M =

(
In
H

)
b =

(
xb
y

)
N =

(
B−1 0
0 R−1

)

Optimal estimation in the linear case: Jb + Jo

x̂ = xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸
gain matrix

(y−Hxb)︸ ︷︷ ︸
innovation vector

Remark: The gain matrix also reads BHT (HBHT + R)−1

(Sherman-Morrison-Woodbury formula) go to statistical approach
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Remark

Given the size of n and p, it is generally impossible to handle explicitly H,
B and R. So the direct computation of the gain matrix is impossible.

� even in the linear case (for which we have an explicit expression for x̂),
the computation of x̂ is performed using an optimization algorithm.
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Generalization:
statistical approach
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Generalization: statistical approach

To be estimated: x =

 x1
...

xn

 ∈ IRn Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Statistical framework:
I y is a realization of a random vector Y
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Reminder: random vectors and covariance matrices

� Random vector: X =

 X1
...
Xn

 where each Xi is a random variable

� Covariance matrix:

C = (Cov(Xi ,Xj))1≤i,j≤n = E
(
[X− E (X)][X− E (X)]T

)
on the diagonal: Cii = Var(Xi)

� Property: A covariance matrix is symmetric positive semidefinite.
(definite if the r.v. are linearly independent)
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Generalization: statistical approach

To be estimated: x =

 x1
...

xn

 ∈ IRn Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Statistical framework:
I y is a realization of a random vector Y

I One is looking for the BLUE, i.e. a r.v. X̂ that is
I linear: X̂ = AY with size(A) = (n, p)
I unbiased: E (X̂) = x
I of minimal variance:

Var(X̂) =
n∑

i=1
Var(X̂i) = Tr(Cov(X̂)) minimum
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Generalization: statistical approach

Hypotheses
I Linear observation operator: H(x) = Hx
I Let Y = Hx + ε with ε random vector in IRp

I E (ε) = 0 unbiased measurement devices
I Cov(ε) = E (εεT ) = R known accuracies and covariances

BLUE:
I linear: X̂ = AY with A(n, p)
I unbiased: E (X̂) = E (AHx + Aε) = AHx + AE (ε) = AHx

So: E (X̂) = x⇐⇒ AH = In.

Remark: AH = In =⇒ ker H = {0} =⇒ rank(H) = n

Since size(H) = (p, n), this implies n ≤ p (again !)
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BLUE:
I minimal variance: min Tr(Cov(X̂))

X̂ = AY = AHx + Aε = x + Aε

Cov(X̂) = E
(
[X̂− E (X̂)][X̂− E (X̂)]T

)
= AE (εεT )AT = ARAT

Find A that minimizes Tr(ARAT ) under the constraint AH = In

Gauss-Markov theorem

A = (HT R−1H)−1HT R−1

This also leads to Cov(X̂) = (HT R−1H)−1
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Link with the variational approach
Statistical approach: BLUE

X̂ = (HT R−1H)−1HT R−1Y with Cov(X̂) = (HT R−1H)−1

go to variational approach

Variational approach in the linear case

Jo(x) =
1
2 ‖Hx− y‖2

o =
1
2 (Hx− y)T R−1(Hx− y)

min
x∈IRn

Jo(x) −→ x̂ = (HT R−1H)−1HT R−1 y

Remarks
I The statistical approach rationalizes the choice of the norm in the

variational approach.

I
[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= HT R−1H = Hess(Jo)︸ ︷︷ ︸
convexity
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Statistical approach: formalism “background value + new
observations”

Z =

(
Xb
Y

)
←− background
←− new observations

Let Xb = x + εb and Y = Hx + εo

Hypotheses:
I E (εb) = 0 unbiased background
I E (εo) = 0 unbiased measurement devices
I Cov(εb, εo) = 0 independent background and observation errors
I Cov(εb) = B et Cov(εo) = R known accuracies and covariances

This is again the general BLUE framework, with

Z =

(
Xb
Y

)
=

(
In
H

)
x +

(
εb
εo

)
and Cov(ε) =

(
B 0
0 R

)
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Statistical approach: formalism “background value + new
observations”

Statistical approach: BLUE
X̂ = Xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸

gain matrix

(Y−HXb)︸ ︷︷ ︸
innovation vector

with
[
Cov(X̂)

]−1
= B−1 + HT R−1H accuracies are added

go to model problem
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Link with the variational approach
Statistical approach: BLUE

X̂ = Xb + (B−1 + HT R−1H)−1HT R−1(Y−HXb)

with Cov(X̂) = (B−1 + HT R−1H)−1 go to variational approach

Variational approach in the linear case
J(x) =

1
2 ‖x− xb‖2

b +
1
2 ‖H(x)− y‖2

o

=
1
2 (x− xb)

T B−1(x− xb) +
1
2 (Hx− y)T R−1(Hx− y)

min
x∈IRn

J(x) −→ x̂ = xb + (B−1 + HT R−1H)−1HT R−1 (y−Hxb)

Same remarks as previously
I The statistical approach rationalizes the choice of the norms for Jo and Jb

in the variational approach.

I
[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= B−1 + HT R−1H = Hess(J)︸ ︷︷ ︸
convexity
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If the problem is time dependent
Dynamical system: xt(tk+1) = M(tk , tk+1)xt(tk) + e(tk)

I xt(tk) true state at time tk

I M(tk , tk+1) model assumed linear between tk and tk+1

I e(tk) model error at time tk

At every observation time tk , we have an observation yk and a model
forecast xf (tk). The BLUE can be applied:
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If the problem is time dependent

xt(tk+1) = M(tk , tk+1) xt(tk) + e(tk)

Hypotheses
I e(tk) is unbiased, with covariance matrix Qk
I e(tk) and e(tl) are independent (k 6= l)
I Unbiased observation yk , with error covariance matrix Rk
I e(tk) and analysis error xa(tk)− xt(tk) are independent
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If the problem is time dependent
Kalman filter (Kalman and Bucy, 1961)
Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xf (tk+1) = M(tk , tk+1) xa(tk) Forecast
Pf (tk+1) = M(tk , tk+1)Pa(tk)MT (tk , tk+1) + Qk

xa(tk+1) = xf (tk+1) + Kk+1
[
yk+1 −Hk+1xf (tk+1)

]
BLUE

Kk+1 = Pf (tk+1)HT
k+1

[
Hk+1Pf (tk+1)HT

k+1 + Rk+1
]−1

Pa(tk+1) = Pf (tk+1)−Kk+1Hk+1Pf (tk+1)

where exponents f and a stand respectively for forecast and analysis.
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If the problem is time dependent

Equivalence with the variational approach
If Hk and M(tk , tk+1) are linear, and if the model is perfect (ek = 0),
then the Kalman filter and the variational method minimizing

J(x) =
1
2
(x− x0)

T P−1
0 (x− x0) +

1
2

N∑
k=0

(HkM(t0, tk)x− yk)
T R−1

k (HkM(t0, tk)x− yk)

lead to the same solution at t = tN .
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In summary

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 58/61



In summary
variational approach least squares minimization (non dimensional terms)

I no particular hypothesis
I either for stationary or time dependent problems
I If M and H are linear, the cost function is quadratic:

a unique solution if p ≥ n
I Adding a background term ensures this property.
I If things are non linear, the approach is still valid.

Possibly several minima

statistical approach
I hypotheses on the first two moments
I time independent + H linear + p ≥ n: BLUE (first

two moments)
I time dependent + M and H linear: Kalman filter

(based on the BLUE)

I hypotheses on the pdfs: Bayesian approach (pdf) +
ML or MAP estimator

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 59/61



In summary

The statistical approach gives a rationale for the choice of the norms, and
gives an estimation of the uncertainty.

time independent problems if H is linear, the variational and the
statistical approaches lead to the same solution (provided
‖.‖b is based on B−1 and ‖.‖o is based on R−1)

time dependent problems if H and M are linear, if the model is perfect,
both approaches lead to the same solution at final time.

4D-Var Kalman filter
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Common main methodological difficulties

I Non linearities: J non quadratic / what about Kalman filter ?
I Huge dimensions [x] = O(106 − 109): minimization of J /

management of huge matrices
I Poorly known error statistics: choice of the norms / B,R,Q

I Scientific computing issues (data management, code efficiency,
parallelization...)

−→ NEXT LECTURE
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