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Data assimilation, the science of compromises

Context characterizing a (complex) system and/or forecasting its
evolution, given several heterogeneous and uncertain

sources of information
Modéle Observations

S s

Assimilation

Widely used for geophysical fluids (meteorology, oceanography,
atmospheric chemistry. .. ), but also in other numerous
domains (e.g. glaciology, nuclear energy, medicine,
agriculture planning...)

Closely linked to inverse methods, control theory, estimation theory,
filtering. . .
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Data assimilation, the science of compromises

Numerous possible aims:

> Forecast: estimation of the present state (initial condition)

v

Model tuning: parameter estimation

v

Inverse modeling: estimation of parameter fields

v

Data analysis: re-analysis (model = interpolation operator)

v

OSSE: optimization of observing systems
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Data assimilation, the science of compromises

Its application to Earth sciences generally raises a number of difficulties,
some of them being rather specific:

> non linearities

> huge dimensions

» poor knowledge of error statistics

> non reproducibility (each experiment is unique)

> operational forecast (computations must be performed in a limited
time)
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Objectives for these two lectures

v

introduce data assimilation from several points of view

> give an overview of the main methods

v

detail the basic ones and highlight their pros and cons

» introduce some current research problems
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Objectives for these two lectures

v

introduce data assimilation from several points of view

» give an overview of the main methods

v

detail the basic ones and highlight their pros and cons

» introduce some current research problems

Outline
1. Data assimilation for dummies: a simple model problem

2. Generalization: linear estimation theory, variational and sequential
approaches

w

Variational algorithms - Adjoint techniques

Reduced order Kalman filters

>

5. Some current research tracks
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A simple but fundamental
example
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Model problem: least squares approach

Two different available measurements of a single quantity. Which
estimation for its true value ? — least squares approach
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Model problem: least squares approach

Two different available measurements of a single quantity. Which
estimation for its true value ? — least squares approach

Example 2 obs y; = 19°C and y, = 21°C of the (unknown) present
temperature x.

> Let J(x) =5 [(x = y1)* + (x — y2)?]

> Ming J(x) — %= }% =20°C
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Model problem: least squares approach
Observation operator  If # units: y; = 66.2°F and y, = 69.8°F

> Let H(x) = gx +32
> Let J(x) = 5 [(H(3) ) + (H() — o]

» Min, J(x) — £=20°C
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Model problem: least squares approach
Observation operator If # units: y; = 66.2°F and y», = 69.8°F

> Let H(x) = §X+32

> Let J(x) = 5 [(H(3) ) + (H() — o]
» Min, J(x) — %=20°C

Drawback # 1: if observation units are inhomogeneous
y1 =66.2°F and y, = 21°C

> J(x) = % [(Hx) = »n)*+ (x —y2))] — & =19.47°C !l
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Model problem: least squares approach

Observation operator If # units: y; = 66.2°F and y», = 69.8°F

> Let H(x) = =x+32

LS Yo

> Let J(x) =5 [(H(x) = y1)? + (H(x) = y2)?]

» Min, J(x) — £=20°C
Drawback # 1: if observation units are inhomogeneous
y1 = 66.2°F and y, = 21°C
1
> J(x) =3 [(Hx) = »n)*+ (x —y2))] — & =19.47°C !l

Drawback # 2: if observation accuracies are inhomogeneous
My 9 67°c

If y; is twice more accurate than y», one should obtain X =

— J should be J(x) = % [(Xl_/zh)Z + (X_lyzﬂ
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Model problem: statistical approach

Reformulation in a probabilistic framework:
> the goal is to estimate a scalar value x
> y; is a realization of a random variable Y;
» One is looking for an estimator (i.e. a r.v.) X that is
> linear: X =a1Yi + Y (in order to be simple)
» unbiased: E(X) = x (it seems reasonable)

» of minimal variance: Var(X) minimum  (optimal accuracy)

— BLUE (Best Linear Unbiased Estimator)
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Model problem: statistical approach

Let Y;=x+¢; with

» E()=0 (i=1,2)
> Var(e;) = o? (i=1,2) known accuracies
> Cov(er,e2) =0

independent measurement errors

unbiased measurement devices
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Reminder: covariance of two random variables

Let X and Y two random variables.

Cov(X,Y) =E[(X—E(X))(Y —E(Y))]
= E(XY) — E(X)E(Y)

Cov(X,X) = Var(X)

Cov(X,Y)

Ox 0y

p(X,Y) =

X and Y independent => Cov(X, Y) =0

The reciprocal is generally false.
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Model problem: statistical approach

Let Y;=x+¢; with

> E(e)=0 (i=1,2)
» Var(g;) = o? (i=1,2) known accuracies
> Cov(eg,e2) =0

independent measurement errors

unbiased measurement devices
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Model problem: statistical approach

Let Y;=x+¢; with

Hypotheses

> E(e))=0 (i=1,2) unbiased measurement devices
» Var(g;) = o? (i=1,2) known accuracies
» Cov(ey,e2) =0 independent measurement errors

Then, since X = a1Y; + anYs = (a1 4+ a2)x + a1e1 + anes

> E()A() = (a1 +a)x+a1E(e1) + axE(e2) = a1+ax=1
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Model problem: statistical approach

Let Y;=x+¢; with

Hypotheses

> E(e))=0 (i=1,2) unbiased measurement devices
» Var(g;) = o? (i=1,2) known accuracies
> Cov(eg,e2) =0 independent measurement errors

Then, since X = a1Y; + anYs = (1 + an)x + azer + anes

> E(X)= (o +a2)x+a1E(e1) + a0E(e2) = a1+ax=1

A~

| 4 Var(X) =E {()A( — X)2:| =E [(01161 + Oégé‘z)z] = 05%0'%4‘(1—041)20'5
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Model problem: statistical approach

In summary:
BLUE
1 1
—hNht+t=Y
f=_% 3
- 1 " 1
2 2
o1 D
N 1 1 .
Its accuracy: [Var(X)} = =4 = accuracies are added
i @3
go to general case
&b\ose,,é‘\
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Model problem: statistical approach

In summary:
BLUE
1 1
—hNht+t=Y
f=_% b
B 1 " 1
ot 03
o1 1 1 .
Its accuracy: [Var(X)} = =4 = accuracies are added
oy @y
go to general case
Remarks:
> The hypothesis Cov(ey,£2) =0 is not compulsory at all.
C . _ O'J?fc b
OV(&‘l,EQ) =C — Q; = m

» Statistical hypotheses on the two first moments of 1, ¢, lead to
statistical results on the two first moments of X.
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Model problem: statistical approach

Variational equivalence
This is equivalent to the problem:

2
03

Minimize J(x) = % [(X —af _y2)2]
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Model problem: statistical approach

Variational equivalence

This is equivalent to the problem:

2 2

Minimize J(x) = % [(X _Ulyl)z L& _0;/2)2]

Remarks:

» This answers the previous problems of sensitivity to inhomogeneous
units and insensitivity to inhomogeneous accuracies

> This gives a rationale for choosing the norm for defining J

1 1 1
» J(R) = = — = [Var(&
() = 5+ o =Nar(a)
convexity accuracy
fb‘osenéa‘\é
Z% 5.
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Model problem

Alternative formulation: background + observation

If one considers that y; is a prior (or background) estimate x, for x, and
¥» = y is an independent observation, then:

1(x—xp)* | 1(x—y)?
J =X -7 i SO A
W=7 T3 »
Jb Jo
and
1 n 1
S XbT Y
)A(:Ul%—ogszJrU_i (y — xp)
i + i Ui"‘@% ——
0'% o2 ~—~—innovation
gain
,u‘ose’“
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Model problem
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Interpretation

If the background error and the observation
error are uncorrelated: E(e°e?) = 0, then
one can show that the estimation error and
the innovation are uncorrelated:

E(e*(Y — X)) = 0

— orthogonal projection for the scalar prod-
uct < 21,24 >= E(lez)
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Model problem: Bayesian approach

One can also consider x as a realization of a r.v. X, and be interested in
the pdf p(X]Y).

R
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Reminder: Bayes theorem
Let A and B two events.
P(AN B)

Example:

1  P(heart card d card 2
P(heart card | red card) = = = (heart cave (1 Gt cae)) &)

2 P(red card) ~16/32

P(BIA) P(A)

P(AIB) = =5

Thus, if X and Y are two random variables:

P(Y =y|X =x)P(X
P(Y =y)

PX=x|Y=y)=

L 305€0,
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Model problem: Bayesian approach

One can also consider x as a realization of a r.v. X, and be interested in
the pdf p(X]Y).

Several optimality criteria

» minimum variance: )A<MV such that the spread around it is minimal
— Xuv = E(X]Y)

> maximum a posteriori: most probable value of X given Y
— Xmap such that % =0

» maximum likelihood: X, that maximizes p(Y|X)

> Based on the Bayes rule:
P(Y =y | X =x)P(X =x)
P(X=x|Y=y)=
( | ) POY =)

> requires additional hypotheses on prior pdf for X and for Y|X

s, > In the Gaussian case, these estimations coincide with the BLUE

&

v
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Model problem: Bayesian approach

Back to our example: observations y; and y, of an unknown value x.

The simplest approach: maximum likelihood (no prior on X)

Hypotheses:
> Y = N(X,07)

unbiased, known accuracies + known pdf
> COV(Yl, Yz) =0

independent measurement errors

Likelihood function:  £(x) = dP(Y1 =y and Y2 = y» | X = x)

One is looking for Xy = Argmax £(x)  maximum likelihood estimation
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Model problem: Bayesian approach

2 —X
~TLem0r=nix =) =[] e
i=1

V2T a, ;

Argmax L£(x) = Argmin (—In L(x))

= Argmin % {(X -n)?  (x- y2)2]

+
2 2
01 g5
A
1 1
SN+ =)
" 01 5 i
Hence Xy = 1 1 BLUE again
-+ = (because of Gaussian hypothesis)
o 2
.s»‘ose"‘«\
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Model problem: synthesis

Data assimilation methods are often split into two families: variational
methods and statistical methods.

» Variational methods: minimization of a cost function (least squares
approach)

> Statistical methods: algebraic computation of the BLUE (with
hypotheses on the first two moments), or approximation of pdfs (with
hypotheses on the pdfs) and computation of the MAP estimator

> There are strong links between those approaches, depending on the
case (linear ? Gaussian ?)
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Model problem: synthesis

Data assimilation methods are often split into two families: variational
methods and statistical methods.

» Variational methods: minimization of a cost function (least squares
approach)

> Statistical methods: algebraic computation of the BLUE (with
hypotheses on the first two moments), or approximation of pdfs (with
hypotheses on the pdfs) and computation of the MAP estimator

> There are strong links between those approaches, depending on the
case (linear ? Gaussian ?)

If you have understood this previous stuff, you have (almost) understood
everything on data assimilation.
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Generalization:
variational approach
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Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : eR"
Xp
1
Observations: y = : € RP

Yp

Observation operator: y = H(x), with H: R” — R”

3
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Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

x1
_ X2 . an observation of X122
If x= X3 2 3= ( an observation of )?4 )
Xa
1 1 0 0
then H(x)=Hx withH=| 2 2
0 O 1
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Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : e R"
Xn
1
Observations: y = : € RP

Yp

Observation operator: y = H(x), with H: R” — R”

1
Cost function: J(x) = 5 [H(x) —y|? with ||.|| to be chosen.
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Reminder: norms and scalar products

n
lul? =uTu=3"uf
i=1
n

Associated scalar product: (u,v) = u'v= g u;Vv;
=il

let M a symmetric positive definite matrix
n n

M-norm: |jul|3y =u'Mu= sz’l u;uj

i=1 j=1

n n
Associated scalar product: (u,v)m = u'Mv= Z Z mjj u;v;
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Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = eR”
Xp
y1

Observations: y = € RP

Yp

Observation operator: y = H(x), with H: R” — R”

1
Cost function: J(x) 3 |H(x) —y|? with ||.]| to be chosen.

Ry
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Generalization: arbitrary number of unknowns and observations
X1
To be estimated: x = : eR"

Xn
34!
Observations: y = : € RP

Yp
Observation operator: y = H(x), with H: R” — R”
1
Cost function: J(x) = 5 |H(x) —y|? with ||.|| to be chosen.

(Intuitive) necessary (but not sufficient) condition for the existence of a
unique minimum:
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Formalism “background value + new observations”

7= Xp <— background
S\ y +— new observations

The cost function becomes:

1 1
)= Slx=xeld + S IHE) -y

b Jo
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Formalism “background value + new observations”

,— ( Xb ) +— background

y +— new observations

The cost function becomes:

1
S = Slx=xslf + S IHE) - I

b Jo

The necessary condition for the existence of a unique minimum (p > n)
is automatically fulfilled.

yosep,
g 4
g

-~
°
£
=
3

E. Blayo - An introduction to data assimilation

rd
Ecole GDR Egrin 2014 30/61 &2/7@-



If the problem is time dependent

> Observations are distributed in time: y = y(t)

» The observation cost function becomes:

1 N
Jo(x) = 3 Z [ Hi(x(t:)) — y(t:)]12
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If the problem is time dependent

> Observations are distributed in time: y = y(t)

» The observation cost function becomes:
L
Jo(x) = 3 S IIH(x(8)) — y ()3
i=0

> There is a model describing the evolution of x: dx = M(x) with

x(t = 0) = xo. Then J is often no longer minimized w.r.t. x, but
w.r.t. Xo only, or to some other parameters.

N N
1 1
Jo(x0) = 5 D IIHi(x()) = y(t)I5 = 5 D I1H:(Mo-se,(x0)) — y(8)15
i=0 i=0
\‘b\osené
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If the problem is time dependent

B~
obs
L obs
m Previous forecast
obs
X,
%
A obs
obs
T Time
3DVAR Assimilation window
1 1<
Jxo) = Slxo—xgll; +5 D I Hi(x(t:) = y(8)l3
S i=0
background term Jp
2%

observation term J,

E. Blayo - An introduction to data assimilation
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(%0) = 5 [Ix0 = x5+ 5 D IIHi(Mooss(x0)) =y (813
i=0

» If H and M are linear then J, is quadratic.
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = 7 [|xo —xpll5 + 5 D I Hi(Mo—t,(x0)) — y ()13
i=0

» If H and M are linear then J, is quadratic.

» However it generally does not have a unique minimum, since the
number of observations is generally less than the size of xq (the
problem is underdetermined: p < n).

@5t

Example: let (xf,x}) = (1,1) and y = 1.1 an observa-
tion of %(xl + x2).

1 2
Jo(x1,x2) = 3 (% - 1-1>

An introduction to data assimilation



Uniqueness of the minimum 7

2
i=0

N
1 1
J(x0) = Jb(x0) + Jo(x0) = 7 10 — %55+ 3 D IIHi (Mo (x0)) = y(8)13
» If H and M are linear then J, is quadratic.

» However it generally does not have a unique minimum, since the

number of observations is generally less than the size of xq (the
problem is underdetermined).

» Adding J, makes the problem of minimizing J = J, + J, well posed

Example: let (x{,x}) = (1,1) and y = 1.1 an observa-
tion of 1(x1 +x2). Let (x,x?) = (0.9,1.05)

1
J(Xl,XQ) = 5 (Xl + X2

(05 fxoy)-1.17+x-0.0Psty-1 08

. ;
CE 1.1) +5 [(x1 = 0.9)? + (x2 — 1.05)?]
Jo b
osen,  — (X7, x3) = (0.94166..., 1.09166...)
S -~

duction to data assimilation
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(%0) = 5 IIxo —xb[[F+ 5 > IHi(Mo-se,(x0)) —y(t) 12
i=0

> If H and/or M are nonlinear then J, is no longer quadratic.
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(%0) = 5 IIxo —xb[[F+ 5 > IHi(Mo-se,(x0)) —y(t) 12
i=0

> If H and/or M are nonlinear then J, is no longer quadratic.

Example: the Lorenz system (1963)

d

d—::a(y—x)

d
d—};z,@x—y—xz
dz_ Z+ X

yosep,
® %
g
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Uniqueness of the minimum 7

J(x0) = Jb(x0) + Jo(x0) = 5 ||><o—><b||/ﬂL Z [Hi(Mo—(x0)) —y(t:)12
> If H and/or M are nonlmear then J, is no longer quadratic.

Example: the Lorenz system (1963)

dx

dr a(y — x)
dy —Bx—y—xz
dz_ 24 x
dt vy y

osep,
O

npormatis fFmathematic
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = 5 [[x0 —xp[5+ 3 D I Hi(Mooe,(x0)) — y ()13
i=0

» If H and/or M are nonlinear then J, is

Assimilation time = 1

no longer quadratic.

Assimilation time = 2
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Assimilation time = 4
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Uniqueness of the minimum 7

J(x0)

» If H and/or M are nonlinear then J, is no longer quadratic.
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> Adding J, makes it “more quadratic” (Jp is a regularization term),

E. Blayo -

An introduction to data assimilation

but J = J, + Jp may however have several local minima.
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A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control

variables, norms, observations. .. ), the problem is entirely defined. Hence
its solution.

The “physical” (i.e. the most important) part of data
assimilation lies in the definition of J.

The rest of the job, i.e. minimizing J, is “only” technical work.
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Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let M a p x n matrix, with rank n, and b € R”. (hence p > n)

Let J(x) = |[Mx — b||?> = (Mx — b)"(Mx — b).

J is minimum for X = M*b , where M* = (MTM)~IMT
(generalized, or Moore-Penrose, inverse).

yosep,
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Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let M a p x n matrix, with rank n, and b € R”. (hence p > n)
Let J(x) = |[Mx — b||?> = (Mx — b)"(Mx — b).

J is minimum for X = M*b , where M* = (MTM)~IMT
(generalized, or Moore-Penrose, inverse).

Corollary: with a generalized norm

Let N a p X p symmetric definite positive matrix.

Let J1(x) = |[Mx — b||3, = (Mx — b)"N (Mx — b).
Jy is minimum for X = (M"NM)~!M'"Nb.
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Link with data assimilation

In the case of a linear, time independent, data assimilation problem:

1 ~
Jo(x) = 5 [Hx = y|[5 = 5 (Hx — y) "R (Hx —y)

N|

Optimal estimation in the linear case: J, only

min Jo(x) —

% =(H'R'H)'H'R 'y
xeR"

go to statistical approach
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Link with data assimilation

With the formalism “background value + new observations":
J(x) = Jp(x) + Jo(x)
= ShewlB S IHG) I
% (x —xp) "B (x — xp) + % (Hx —y)"R™!(Hx — y)
= (Mx—b)"N(Mx —b) = |[Mx —b||3

wnm= () o=(3) w=( 5" %)

0S€,
s
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Link with data assimilation

With the formalism “background value + new observations™:
J(x) = Jp(x) + Jo(x)
= ShewlB S IHG) I
% (x —xp) "B (x — xp) + % (Hx —y)"R™!(Hx — y)
= (Mx—b)"N(Mx —b) = |[Mx —b||3

wnm= () o=(3) w=( 5" %)

Optimal estimation in the linear case: J, + J,

£x=xp+ (BT +HRTH)'H'R™!  (y—Hx,)
N——

gain matrix innovation vector

)

Remark: The gain matrix also reads BH" (HBH' + R) ™' &y

$30%05 (Sherman-Morrison-Woodbury formula) go to statistical approach
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Remark

Given the size of n and p, it is generally impossible to handle explicitly H,
B and R. So the direct computation of the gain matrix is impossible.

» even in the linear case (for which we have an explicit expression for X),
the computation of X is performed using an optimization algorithm.

Ry

2
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Generalization:
statistical approach
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Generalization: statistical approach

X1 7
To be estimated: x = : € R" Observations: y = : €RP
Xn Yp
Observation operator: y = H(x), with H: R” — R”
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Generalization: statistical approach

X1 7
To be estimated: x = : € R" Observations: y = : €RP
Xn Yp
Observation operator: y = H(x), with H: R” — R”

Statistical framework:

> y is a realization of a random vector Y
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Reminder: random vectors and covariance matrices

X1

where each X; is a random variable

X

€ = (Cov(X:, X)) E (X — EX)]IX — EX)]")

1<ij<n =

on the diagonal: C; = Var(X;)

A covariance matrix is symmetric positive semidefinite.
(definite if the r.v. are linearly independent)

yosep,
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Generalization: statistical approach

X1 Y1
To be estimated: x = : € R" Observations: y = : €R’
Xn Yp
Observation operator: y = H(x), with H: R" — RP

Statistical framework:

> y is a realization of a random vector Y

> One is looking for the BLUE, i.e. a r.v X that is
> linear: X = AY with size(A)
> unbiased: E(X) =

=(n,p)

X

» of minimal variance'

Var ZVar

= Tr(Cov(X)) minimum

E. Blayo - An introduction to data assimilation
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Generalization: statistical approach

Hypotheses

> Linear observation operator: H(x) = Hx
> let Y =Hx+¢
» E(e)=0

unbiased measurement devices
» Cov(e) = E(ee’) =R known accuracies and covariances

with € random vector in RP

yosep,
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Generalization: statistical approach

Hypotheses

> Linear observation operator: H(x) = Hx
> Let Y =Hx+e with e random vector in R”

» E(e)=0 unbiased measurement devices
» Cov(e) = E(ee’) =R known accuracies and covariances

BLUE:
> linear: X = AY  with A(n, p)

> unbiased: E(X) = E(AHx + Ae) = AHx + AE(g) = AHx
So: E(X) =x <= AH = 1,,.

yosep,
g 4
g
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Generalization: statistical approach

Hypotheses

> Linear observation operator: H(x) = Hx
> Let Y =Hx+e with e random vector in R”

» E(e)=0 unbiased measurement devices
» Cov(e) = E(ee’) =R known accuracies and covariances

BLUE:
> linear: X = AY  with A(n, p)

> unbiased: E(X) = E(AHx + Ae) = AHx + AE(g) = AHx
So: E(X) =x <= AH = 1,,.

Remark: AH =1, — kerH = {0} = rank(H) = n

oy Since size(H) = (p, n), this implies n < p (again !)

2
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BLUE:

» minimal variance: min Tr(Cov(X))

X = AY = AHx + Ae = x + Ae

Cov(X) = E (IX = ER)IX — E)T)
— AE(ee")AT = ARAT

Find A that minimizes Tr(ARAT) under the constraint AH =1,

yosep,
g 4
g
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BLUE:

» minimal variance: min Tr(Cov(X))

X = AY = AHx + Ae = x + Ae

Cov(X) = E (IX = ER)IX — E)T)
— AE(ee")AT = ARAT

Find A that minimizes Tr(ARAT) under the constraint AH =1,

Gauss-Markov theorem

A=(H'RH)'H'R!

yosep,
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BLUE:

» minimal variance: min Tr(Cov(X))

X = AY = AHx + Ae = x + Ae

Cov(X) = E (IX = ER)IX — E)T)
— AE(ee")AT = ARAT

Find A that minimizes Tr(ARAT) under the constraint AH =1,

Gauss-Markov theorem

A=(H'RH)'H'R!

This also leads to  Cov(X) = (HTR™'H)"!

yosep,
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Link with the variational approach

Statistical approach: BLUE

X =(H"R*H)"'HTR'Y with Cov(X) = (H'R!H)™*

go to variational approach

yosep,
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Link with the variational approach

Statistical approach: BLUE

X=(H"R!H)'HTR7Y with Cov(X) = (H"R"*H)!

go to variational approach
Variational approach in the linear case
1 1 _
Jo(x) = 5 [Hx = y|12 = = (Hx — y) TR (Hx — )

mIiSnJo(x) —  %=(H'R'H)'H'R 'y

Xe
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Link with the variational approach

Statistical approach: BLUE

X=(H"R!H)'HTR7Y with Cov(X) = (H"R"*H)!

go to variational approach

Variational approach in the linear case

1 1 _
Jo(x) = 5 [Hx =y = 5 (Hx = y) "R (Hx — )

mIiSnJo(x) —  %=(H'R'H)'H'R 'y

Xe

» The statistical approach rationalizes the choice of the norm in the
variational approach.

A 7—1
> [cov(X)} — HTR™'H = Hess(Jj,)
accuracy ConVeXIty

0S¢,
&

o0 3
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Statistical approach: formalism “background value 4+ new

observations”
Xp <— background
Z= .
Y <— new observations

Let X, =x+¢€, and Y =Hx+eg,

Hypotheses:

> E(ep) =0 unbiased background
> E(e,)=0 unbiased measurement devices
> Cov(ep,0) =0 independent background and observation errors
> Cov(ep) = B et Cov(e,) =R known accuracies and covariances

This is again the general BLUE framework, with

= (3)-(B)me () o= (2 )

-
2 -
=
13
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Statistical approach: formalism “background value 4+ new
observations”

Statistical approach: BLUE
X=X+ (BL+H'RIH)'H'R™! (Y —HX,)

gain matrix

5=l
with [ccv(X)] =B '+H'RH

innovation vector

accuracies are added
go to model problem

yosep,
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Link with the variational approach

Statistical approach: BLUE

X=X,4+ (B +H R H)'H'R (Y — HX,)
with Cov(X) = (B™' + H'R'H)*

go to variational approach

yosep,
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Link with the variational approach

Statistical approach: BLUE

X=X,4+ (B +H R H)'H'R (Y — HX,)
with Cov(X) = (B™' + H'R'H)* go to variational approach

Variational approach in the linear case
1 1
Jx) = EIIX—XbIIi + EIIH(X)—ylli
1 _ 1 _
= E(X—Xb)TB 1(><—Xb)+§(HX—3I)TR "(Hx —y)

mli?n" Jx) — f=xp+(B'+HRH)T'H'R™" (y — Hxp)
XE
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Link with the variational approach

Statistical approach: BLUE

X=X,4+ (B +H R H)'H'R (Y — HX,)

with Cov(X) = (B™' + H'R'H)* go to variational approach

Variational approach in the linear case

1 1
) = gl + 5 IHE) -y

= S0 x) BT x—x) + 5 (Hx—y) R (Hx —y)

2
mli?nn Jx) — f=xp+(B'+HRH)T'H'R™" (y — Hxp)
XE

Same remarks as previously

> The statistical approach rationalizes the choice of the norms for J, and J,
in the variational approach.

ol =" =t Tp—-1ly _
> [Cov(X)] =B +H R "H= Hess(J)
N—_——
convexity

RS

accuracy

7,

gnivers,
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If the problem is time dependent

Dynamical system: x'(tx1) = M(tx, ter1)x (tx) + e(tx)
> x'(ty) true state at time ¢
> M(ty, ty11) model assumed linear between t; and ty 1
> e(tx) model error at time &

At every observation time t,, we have an observation y, and a model
forecast x/(tx). The BLUE can be applied:
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If the problem is time dependent

Xt(thrl) = M(tk, tk+1)xt(tk) + e(tk)

Hypotheses

» e(ty) is unbiased, with covariance matrix Qx
> e(tx) and e(t) are independent (k # /)
» Unbiased observation y, with error covariance matrix Ry

» e(tx) and analysis error x?(tx) — x*(tx) are independent

yosep,
& 4
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If the problem is time dependent
Kalman filter (Kalman and Bucy, 1961)

Initialization: x?(to)

= X approximate initial state

Pa(to) = Pgy error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

x(tkr1) = M(tx, tiyr) x2(t) Forecast
Pi(tis1) = M(ti, tig1)P?(ti)MT (i, tiesr) + Qi
x3(tig1) = X (tkr1) + Kirr [Yoar — Hegpax (tes)] ) BLUE
Kivi = P/(tie)H] 4 [Hira P (t1)H ; + Riga]
Po(te1) = P/(tkr1) — KisrHir1PY (tes1)
where exponents f and ? stand respectively for forecast and analysis.
® e
® .,——-./_V\\_/./’ ®
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If the problem is time dependent

Equivalence with the variational approach

If Hy and M(tk, txr1) are linear, and if the model is perfect (ex = 0),
then the Kalman filter and the variational method minimizing

N
1 _ 1 _
Jx) =3 (x= x0) Pyt (x — x0) + > > (HM(to, ti)x — yie) TR, (HiM(to, t)x — yi)
k=0
lead to the same solution at t = ty.

ose,
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In summary

yosep,
g 4
g
s

variational approach least squares minimization (non dimensional terms)

>
| 4
| 4

vy

statistical approach
>

>

>

>

no particular hypothesis

either for stationary or time dependent problems

If M and H are linear, the cost function is quadratic:
a unique solution if p > n

Adding a background term ensures this property.

If things are non linear, the approach is still valid.
Possibly several minima

hypotheses on the first two moments

time independent + H linear + p > n: BLUE (first
two moments)

time dependent + M and H linear: Kalman filter
(based on the BLUE)

hypotheses on the pdfs: Bayesian approach (pdf) +
ML or MAP estimator
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In summary

The statistical approach gives a rationale for the choice of the norms, and
gives an estimation of the uncertainty.

time independent problems if H is linear, the variational and the
statistical approaches lead to the same solution (provided
||l.Il» is based on B=! and ||.||, is based on R™1)

time dependent problems if H and M are linear, if the model is perfect,
both approaches lead to the same solution at final time.
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Common main methodological difficulties

> Non linearities: J non quadratic / what about Kalman filter ?

» Huge dimensions [x] = O(10° — 10%): minimization of J /
management of huge matrices

> Poorly known error statistics: choice of the norms / B,R, Q

> Scientific computing issues (data management, code efficiency,
parallelization...)

— NEXT LECTURE
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