

An introduction to data assimilation Episode 2

Eric Blayo University of Grenoble and INRIA

Previously...

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 2/65

Model problem: least squares approach

Two different available measurements of a single quantity. Which estimation for its true value ? \longrightarrow least squares approach

Example 2 obs $y_1 = 19^oC and $y_2 = 21$ ^oC of the (unknown) present$ temperature x.

• Let
$$
J(x) = \frac{1}{2} [(x - y_1)^2 + (x - y_2)^2]
$$

\n• Min_x $J(x) \longrightarrow \hat{x} = \frac{y_1 + y_2}{2} = 20^{\circ} \text{C}$

Model problem: least squares approach

Observation operator If \neq units: $y_1 = 66.2$ °F and $y_2 = 69.8$ °F

► Let
$$
H(x) = \frac{9}{5}x + 32
$$

\n► Let $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (H(x) - y_2)^2]$
\n► Min_x $J(x) \longrightarrow \hat{x} = 20^\circ \text{C}$

Drawback $# 1:$ if observation units are inhomogeneous $y_1 = 66.2^{\circ}$ F and $y_2 = 21^{\circ}$ C $J(x) = \frac{1}{2} [(H(x) - y_1)^2 + (x - y_2)^2] \longrightarrow \hat{x} = 19.47^{\circ} \text{C}$!!

Drawback # 2: if observation accuracies are inhomogeneous If y_1 is twice more accurate than y_2 , one should obtain $\hat{x} = \frac{2y_1 + y_2}{2}$ $\frac{+y_2}{3} = 19.67^{\circ}$ C

$$
\longrightarrow J \text{ should be } J(x) = \frac{1}{2} \left[\left(\frac{x - y_1}{1/2} \right)^2 + \left(\frac{x - y_2}{1} \right)^2 \right]
$$

1

Model problem: statistical approach

Reformulation in a **probabilistic framework**:

- \triangleright the goal is to estimate a scalar value x
- \blacktriangleright y_i is a realization of a random variable Y_i
- ▶ One is looking for an estimator (i.e. a r.v.) \hat{X} that is
	- **Iinear**: $\hat{X} = \alpha_1 Y_1 + \alpha_2 Y_2$ (in order to be simple)
	- **In unbiased**: $E(\hat{X}) = x$ (it seems reasonable)
	- **of minimal variance**: $\text{Var}(\hat{X})$ minimum (optimal accuracy)

 \rightarrow BLUE (Best Linear Unbiased Estimator)

Model problem: statistical approach

Let $Y_i = x + \varepsilon_i$ with

Hypotheses

-
- \blacktriangleright Var(ε_i) = σ_i^2
-

 $E(\varepsilon_i) = 0$ $(i = 1, 2)$ unbiased measurement devices

known accuracies

 \triangleright Cov($\varepsilon_1, \varepsilon_2$) = 0 independent measurement errors

BLUE

$$
\hat{X} = \frac{\frac{1}{\sigma_1^2} Y_1 + \frac{1}{\sigma_2^2} Y_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}
$$
\nIts accuracy:
$$
\left[\text{Var}(\hat{X}) \right]^{-1} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}
$$
 accuracies are added

Model problem: statistical approach

Variational equivalence

This is equivalent to the problem:

Minimize
$$
J(x) = \frac{1}{2} \left[\frac{(x - y_1)^2}{\sigma_1^2} + \frac{(x - y_2)^2}{\sigma_2^2} \right]
$$

Remarks:

- \triangleright This answers the previous problems of sensitivity to inhomogeneous units and insensitivity to inhomogeneous accuracies
- \triangleright This gives a rationale for choosing the norm for defining J

$$
\sum_{\text{convexity}}^{\text{J}''(\hat{x})} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} = \underbrace{[\text{Var}(\hat{x})]^{-1}}{\text{accuracy}}
$$

Model problem: formulation background $+$ observation

If one considers that y_1 is a prior (or *background*) estimate x_b for x, and $y_2 = y$ is an independent observation, then:

$$
J(x) = \underbrace{\frac{1}{2} \frac{(x - x_b)^2}{\sigma_b^2}}_{J_b} + \underbrace{\frac{1}{2} \frac{(x - y)^2}{\sigma_o^2}}_{J_o}
$$

and

Model problem: Bayesian approach

One can also consider x as a realization of a r.v. X , and be interested in the pdf $p(X|Y)$.

Several optimality criteria

- **In minimum variance**: \hat{X}_{MV} such that the spread around it is minimal $\longrightarrow \hat{X}_{MV} = E(X|Y)$
- **maximum a posteriori**: most probable value of X given Y $\longrightarrow \hat{X}_{MAP}$ such that $\frac{\partial p(X|Y)}{\partial X} = 0$
- **naximum likelihood**: \hat{X}_{ML} that maximizes $p(Y|X)$
- \blacktriangleright Based on the Bayes rule: $P(X = x | Y = y) = \frac{P(Y = y | X = x) P(X = x)}{P(Y = y)}$
- requires additional hypotheses on prior pdf for X and for $Y|X$

 \triangleright In the Gaussian case, these estimations coincide with the BLUE

informatics and mathematics

Generalization: arbitrary number of unknowns and observations

To be estimated:
$$
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$

Observations: $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} \in \mathbb{R}^p$

Observation operator: $y \equiv H(x)$, with $H : \mathbb{R}^n \longrightarrow \mathbb{R}^p$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 10/65

Generalization: variational approach Stationary case: $J(\mathbf{x}) = \begin{pmatrix} \frac{1}{2} \|\mathbf{x} - \mathbf{x}_b\|_b^2 & + \frac{1}{2} \end{pmatrix}$ $\overline{\text{background term}}$ J_b $\frac{1}{2}$ ||H(**x**) – **y**||²_o observation term J_o

Time dependent case:

Generalization: statistical approach

Let
$$
\mathbf{X}_b = \mathbf{x} + \varepsilon_b
$$
 and $\mathbf{Y} = \mathbf{H}\mathbf{x} + \varepsilon_o$

Hypotheses:

- $E(\varepsilon_b) = 0$ unbiased background
- $E(\varepsilon_{0}) = 0$ unbiased measurement devices
- \triangleright Cov(ε_b , ε_o) = 0 independent background and observation errors
- \triangleright Cov(ε_b) = **B** et Cov(ε_a) = **R** known accuracies and covariances

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = \mathbf{X}_b + \underbrace{(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}}_{\text{gain matrix}} \underbrace{(\mathbf{Y} - \mathbf{H} \mathbf{X}_b)}_{\text{innovation vector}}
$$
\nwith
$$
\left[\text{Cov}(\hat{\mathbf{X}}) \right]^{-1} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}
$$

Links between both approaches

Statistical approach: BLUE

$$
\hat{\mathbf{X}} = \mathbf{X}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{Y} - \mathbf{H} \mathbf{X}_b)
$$

with
$$
\mathsf{Cov}(\hat{\mathbf{X}}) = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1}
$$

Variational approach in the linear stationary case

$$
J(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}_b\|_b^2 + \frac{1}{2} ||H(\mathbf{x}) - \mathbf{y}||_o^2
$$

\n
$$
= \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})
$$

\n
$$
\min_{\mathbf{x} \in \mathbf{R}^n} J(\mathbf{x}) \longrightarrow \hat{\mathbf{x}} = \mathbf{x}_b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}_b)
$$

Same remarks as previously

In The statistical approach rationalizes the choice of the norms for J_0 and J_b in the variational approach.

$$
\sum \underbrace{\left[\text{Cov}(\hat{\mathbf{X}}) \right]^{-1}}_{\text{accuracy}} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} = \underbrace{\text{Hess}(J)}_{\text{convexity}}
$$

If the problem is time dependent

 D ynamical system: $\mathbf{x}^t(t_{k+1}) = \mathsf{M}(t_k, t_{k+1}) \mathbf{x}^t(t_k) + \mathbf{e}(t_k)$

- \blacktriangleright $\mathbf{x}^t(t_k)$ true state at time t_k
- \blacktriangleright **M**(t_k , t_{k+1}) model assumed linear between t_k and t_{k+1}
- \blacktriangleright **e**(t_k) model error at time t_k

Observations y_k distributed in time.

Hypotheses

- \blacktriangleright **e**(t_k) is unbiased, with covariance matrix \mathbf{Q}_k
- $e(t_k)$ and $e(t_l)$ are independent $(k \neq l)$
- \blacktriangleright Unbiased observation \mathbf{y}_k , with error covariance matrix \mathbf{R}_k
- ► $\mathbf{e}(t_k)$ and analysis error $\mathbf{x}^a(t_k) \mathbf{x}^t(t_k)$ are independent

If the problem is time dependent

Kalman filter (Kalman and Bucy, 1961)

Initialization: **x** $\mathbf{a}(t_0)$ = \mathbf{x}_0 approximate initial state $\mathbf{P}^{\mathsf{a}}(t_0)$ = \mathbf{P}_0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

$$
\mathbf{x}_{k+1}^{f} = \mathbf{M}_{k,k+1} \mathbf{x}_{k}^{2} \quad \text{Forecast}
$$
\n
$$
\mathbf{P}_{k+1}^{f} = \mathbf{M}_{k,k+1} \mathbf{P}_{k}^{3} \mathbf{M}_{k,k+1}^{T} + \mathbf{Q}_{k}
$$
\n
$$
\mathbf{x}_{k+1}^{a} = \mathbf{x}_{k+1}^{f} + \mathbf{K}_{k+1} \left[\mathbf{y}_{k+1} - \mathbf{H}_{k+1} \mathbf{x}_{k+1}^{f} \right] \quad \text{BLE analysis}
$$
\n
$$
\mathbf{K}_{k+1} = \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} \left[\mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1} \right]^{-1}
$$
\n
$$
\mathbf{P}_{k+1}^{a} = \mathbf{P}_{k+1}^{f} - \mathbf{K}_{k+1} \mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f}
$$

If the problem is time dependent

Equivalence with the variational approach

If \mathbf{H}_k and $\mathbf{M}(t_k, t_{k+1})$ are linear, and if the model is perfect ($\mathbf{e}_k = 0$), then the Kalman filter and the variational method minimizing

$$
J(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{P}_0^{-1}(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} \sum_{k=0}^N (\mathbf{H}_k \mathbf{M}(t_0, t_k) \mathbf{x} - \mathbf{y}_k)^T \mathbf{R}_k^{-1} (\mathbf{H}_k \mathbf{M}(t_0, t_k) \mathbf{x} - \mathbf{y}_k)
$$

lead to the same solution at $t = t_N$.

Common main methodological difficulties

- \triangleright Non linearities: J non quadratic / what about Kalman filter ?
- ► Huge dimensions $[\mathbf{x}] = \mathcal{O}(10^6 10^9)$: minimization of J / management of huge matrices
- ▶ Poorly known error statistics: choice of the norms / **B**, **R**, **Q**
- \triangleright Scientific computing issues (data management, code efficiency, parallelization...)

−→ TODAY's LECTURE

Towards larger dimensions and stronger nonlinearities

Increasing the model resolution increases the size of the state variable and, for a number of applications, allows for stronger scale interactions.

Snapshots of the surface relative vorticity in the SEABASS configuration of NEMO, for different model resolutions: $1/4^\circ$, $1/12^\circ$, $1/24^\circ$ and $1/100^\circ$.

Towards larger dimensions and stronger nonlinearities

This results in increased turbulent energy levels and nonlinear effects.

Towards larger dimensions and stronger nonlinearities

This results in increased turbulent energy levels and nonlinear effects.

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 19/65

Statistical approach

The Kalman filter assumes that M and H are linear. If not: linearization

Reminder: derivatives and gradients

- $f : E \longrightarrow \mathbf{R}$ (*E* being of finite or infinite dimension)
- Gradient (or Fréchet derivative): E being an Hilbert space, f is Fréchet differentiable at point $x \in E$ iff

 $\exists p \in E$ such that $f(x+h) = f(x) + (p,h) + o(||h||) \quad \forall h \in E$

 ρ is the derivative or gradient of f at point x , denoted $f'(x)$ or $\nabla f(x)$.

 $h \to (p(x), h)$ is a linear function, called differential function or tangent linear function or Jacobian of f at point x

The Kalman filter assumes that M and H are linear. If not: linearization

$$
\mathbf{x}_{k+1}^f = M_{k,k+1}(\mathbf{x}_k^a) \simeq M_{k,k+1}(\mathbf{x}_k^t) + \mathbf{M}_{k,k+1} \underbrace{(\mathbf{x}_k^a - \mathbf{x}_k^t)}_{\mathbf{e}_k^a}
$$
\n
$$
\implies \quad \mathbf{x}_{k+1}^f - \mathbf{x}_{k+1}^t = \mathbf{e}_{k+1}^f = \underbrace{M_{k,k+1}(\mathbf{x}_k^t) - \mathbf{x}_{k+1}^t}_{\mathbf{e}_k} + \mathbf{M}_{k,k+1} \mathbf{e}_k^a
$$
\n
$$
\implies \quad \mathbf{P}_{k+1}^f = \text{Cov}(\mathbf{e}_{k+1}^f) = \mathbf{M}_{k,k+1} \mathbf{P}_k^a \mathbf{M}_{k,k+1}^T + \mathbf{Q}_k
$$

and similarly for the other equations of the filter

Extended Kalman filter

Initialization:
$$
x^a(t_0) = x_0
$$
 approximate initial state
 $P^a(t_0) = P_0$ error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

$$
\left(\frac{1}{2}\right)^{2}
$$

$$
\mathbf{x}_{k+1}^{f} = M_{k,k+1}(\mathbf{x}_{k}^{a}) \qquad \text{Forecast}
$$
\n
$$
\mathbf{P}_{k+1}^{f} = \mathbf{M}_{k,k+1} \mathbf{P}_{k}^{a} \mathbf{M}_{k,k+1}^{T} + \mathbf{Q}_{k}
$$
\n
$$
\mathbf{x}_{k+1}^{a} = \mathbf{x}_{k+1}^{f} + \mathbf{K}_{k+1} [\mathbf{y}_{k+1} - H_{k+1}(\mathbf{x}_{k+1}^{f})] \qquad \text{BLE analysis}
$$
\n
$$
\mathbf{K}_{k+1} = \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} [\mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1}]^{-1}
$$
\n
$$
\mathbf{P}_{k+1}^{a} = \mathbf{P}_{k+1}^{f} - \mathbf{K}_{k+1} \mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f}
$$

Extended Kalman filter

Initialization:
$$
x^a(t_0) = x_0
$$
 approximate initial state
 $P^a(t_0) = P_0$ error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

$$
\mathbf{x}_{k+1}^{f} = M_{k,k+1}(\mathbf{x}_{k}^{a})
$$
 Forest
\n
$$
\mathbf{P}_{k+1}^{f} = \mathbf{M}_{k,k+1} \mathbf{P}_{k}^{a} \mathbf{M}_{k,k+1}^{T} + \mathbf{Q}_{k}
$$

\n
$$
\mathbf{x}_{k+1}^{a} = \mathbf{x}_{k+1}^{f} + \mathbf{K}_{k+1} [\mathbf{y}_{k+1} - H_{k+1}(\mathbf{x}_{k+1}^{f})]
$$
 BLUE analysis
\n
$$
\mathbf{K}_{k+1} = \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} [\mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1}]^{-1}
$$

- \triangleright OK if nonlinearities are not too strong
- **•** Requires the availability of $M_{k,k+1}$ and H_k
- More sophisticated approaches have been developed \longrightarrow unscented Kalman filter (exact up to second order, requires no tangent linear model nor Hessian matrix)

Huge dimension: reduced order filters

As soon as [**x**] becomes huge, it's no longer possible to handle the covariance matrices.

Idea: a large part of the system variability can be represented (or is assumed to) in a reduced dimension space.

−→ RRSQRT filter, SEEK filter, SEIK filter...

Huge dimension: reduced order filters

Example: Reduced Rank SQuare Root filter

$$
\blacktriangleright \; \mathbf{P}_0^f \simeq \mathbf{S}_0^f \left(\mathbf{S}_0^f \right)^T \text{ with size}(\mathbf{S}_0^f) = (n, r) \qquad \text{ (r leading modes, } r \ll n)
$$

 \triangleright This is injected in the filter equations. This leads for instance to ${\bf P}^{\scriptscriptstyle a}_k = {\bf S}^{\scriptscriptstyle a}_k \left({\bf S}^{\scriptscriptstyle a}_k\right)^{\scriptscriptstyle T}$, with

$$
\mathbf{S}_{k}^{a} = \underbrace{\mathbf{S}_{k}^{f}}_{(n,r)} \left(\underbrace{\mathbf{I}_{r} - \mathbf{\Psi}_{k}^{T} [\mathbf{\Psi}_{k} \mathbf{\Psi}_{k}^{T} + \mathbf{R}_{k}]^{-1} \mathbf{\Psi}_{k}}_{(r,r)} \right)^{1/2} \qquad \text{where } \mathbf{\Psi}_{k} = \underbrace{\mathbf{H}_{k} \mathbf{S}_{k}^{f}}_{(p,r)}
$$

Pros: most computations in low dimension Cons: choice and time evolution of the modes

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014

A widely used filter: the Ensemble Kalman filter

- \triangleright addresses both problems of non linearities and huge dimension
- \blacktriangleright rather simple and intuitive

Idea: generation of an ensemble of N trajectories, by N perturbations of the set of observations (consistently with **R**). Standard extended Kalman filter, with covariance matrices computed using the ensemble:

Variational approach

Cost function and non linearities

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

Example: the Lorenz system (1963)

$$
\begin{cases}\n\frac{dx}{dt} = \alpha(y - x) \\
\frac{dy}{dt} = \beta x - y - xz \\
\frac{dz}{dt} = -\gamma z + xy\n\end{cases}
$$

$$
J_o(y_0) = \frac{1}{2} \sum_{i=0}^{N} (x(t_i) - x_{obs}(t_i))^2 dt
$$

Cost function and non linearities

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_o is no longer quadratic.

Cost function and non linearities

$$
J(\mathbf{x}_0) = J_b(\mathbf{x}_0) + J_o(\mathbf{x}_0) = \frac{1}{2} ||\mathbf{x}_0 - \mathbf{x}_b||_b^2 + \frac{1}{2} \sum_{i=0}^N ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2
$$

If H and/or M are nonlinear then J_0 is no longer quadratic.

Adding J_b makes it "more quadratic" (J_b is a regularization term), but $J = J_0 + J_b$ may however have several (local) minima.

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

4D-Var

4D-Var algorithm corresponds to the minimization of

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_i) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_i) - \mathbf{y}_i)
$$

Preconditioned cost function

Defining
$$
\mathbf{v} = \mathbf{B}^{-1/2} (\mathbf{x} - \mathbf{x}^b)
$$
, J becomes

$$
J(\mathbf{v}_0) = \frac{1}{2}\mathbf{v}_0^T\mathbf{v}_0 + \frac{1}{2}\sum_{i=0}^N (H_i(\mathbf{B}^{1/2}\mathbf{v}_i + \mathbf{x}_i^b) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{B}^{1/2}\mathbf{v}_i + \mathbf{x}_i^b) - \mathbf{y}_i)
$$

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

The problem is written in terms of $\delta \mathbf{x}_0 = \mathbf{x}_0 - \mathbf{x}_0^b$, and

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1}(\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_i) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_i) - \mathbf{y}_i)
$$

is approximated by a series of quadratic cost functions:

$$
J^{(k+1)}(\delta \mathbf{x}_0) = \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{1}{2} \sum_{i=0}^N (\mathbf{H}_i^{(k)} \delta \mathbf{x}_i - \mathbf{d}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i^{(k)} \delta \mathbf{x}_i - \mathbf{d}_i)
$$

with $\delta \mathbf{x}_{i+1} = \mathbf{M}_{i,i+1}^{(k)} \delta \mathbf{x}_i$ and $\mathbf{d}_i = \mathbf{y}_i - H_i(\mathbf{x}_i^{(k)})$

\blacktriangleright Kind of Gauss-Newton algorithm

 \blacktriangleright Tangent linear hypotheses must be satisfied: $M(\mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}) \simeq M(\mathbf{x}_{0}^{(k)}) + \mathbf{M}^{(k)} \delta \mathbf{x}_{0}$ $H_i(\mathbf{x}_i^{(k)} + \delta \mathbf{x}_i) \simeq H_i(\mathbf{x}_i^{(k)}) + \mathbf{H}_i^{(k)} \delta \mathbf{x}_i$

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

E. Blayo - An introduction to data assimilation **Ecole GDR** Egrin 2014 33/65

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

Multi-incremental 4D-Var: inner loops can be made using some simplified physics and/or coarser resolution (Courtier et al. 1994, Courtier 1995, Veersé d Thépaut 1998, Trémolet 2005).

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 33/65

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

The 3D-FGAT (First Guess at Appropriate Time) is an approximation of incremental 4D-Var where the tangent linear model is replaced by identity:

$$
J^{(k+1)}(\delta \mathbf{x}_0) = \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{1}{2} \sum_{i=0}^N (\mathbf{H}_i^{(k)} \delta \mathbf{x}_0 - \mathbf{d}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i^{(k)} \delta \mathbf{x}_0 - \mathbf{d}_i)
$$

 \rightarrow something between 3D and 4D

Pros:

- \triangleright much cheaper, does not require the adjoint model (see later)
- \blacktriangleright algorithm is close to incremental 4D-Var
- \blacktriangleright innovation is computed at the correct observation time

Cons: approximation !

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

3D-Var: all observations are gathered as if they were all at time t_0 .

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_0) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_0) - \mathbf{y}_i)
$$

Pros: still cheaper Cons: approximation !!

4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

3D-Var: all observations are gathered as if they were all at time t_0 .

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_0) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_0) - \mathbf{y}_i)
$$

Pros: still cheaper Cons: approximation !!

Remark: $3D-Var = Optimal Interpolation = Krigging$

Summary: simplifying $J \rightarrow a$ series of methods **4D-Var**:

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_i) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_i) - \mathbf{y}_i)
$$

Incremental 4D-Var: $M(x_0 + \delta x_0) \simeq M(x_0) + M\delta x_0$

$$
J^{(k+1)}(\delta \mathbf{x}_0) = \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{1}{2} \sum_{i=0}^N (\mathbf{H}_i^{(k)} \delta \mathbf{x}_i - \mathbf{d}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i^{(k)} \delta \mathbf{x}_i - \mathbf{d}_i)
$$

 $\mathsf{Multi\text{-}incremental 4D\text{-}Var:} \quad M(\mathbf{x}_0 + \delta \mathbf{x}_0) \simeq M(\mathbf{x}_0) + \mathbf{S}^{-1} \mathbf{M}^L \delta \mathbf{x}_0^L$ $J^{(k+1)}(\delta x_0^L) = \frac{1}{2} (\delta x_0^L)^T B^{-1} \delta x_0^L + \frac{1}{2}$ $\frac{1}{2} \sum_{i=0}^{N}$ $i=0$ $(\mathbf{H}_i^{(k),L} \delta \mathbf{x}_i^L - \mathbf{d}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i^{(k),L} \delta \mathbf{x}_i^L - \mathbf{d}_i)$

3D-FGAT: $M(x_0 + \delta x_0) \simeq M(x_0) + \delta x_0$

$$
J^{(k+1)}(\delta \mathbf{x}_0) = \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{1}{2} \sum_{i=0}^N (\mathbf{H}_i^{(k)} \delta \mathbf{x}_0 - \mathbf{d}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i^{(k)} \delta \mathbf{x}_0 - \mathbf{d}_i)
$$

3D-Var: $M(x_0 + \delta x_0) \simeq x_0 + \delta x_0$

$$
J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=0}^N (H_i(\mathbf{x}_0) - \mathbf{y}_i)^T \mathbf{R}_i^{-1} (H_i(\mathbf{x}_0) - \mathbf{y}_i)
$$

Given the size of n and p, it is generally impossible to handle explicitly H , **B** and **R**. So, even in the simplest case (3D-Var $+$ H linear, for which we have an explicit expression for \hat{x}) the direct computation of the gain matrix is impossible.

 \triangleright the computation of \hat{x} is performed using an optimization algorithm.

Descent methods

Descent methods for minimizing the cost function require the knowledge of (an estimate of) its gradient.

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k
$$

with
$$
\mathbf{d}_k = \begin{cases}\n-\nabla J(\mathbf{x}_k) & \text{gr} \\
-\left[\text{Hess}(J)(\mathbf{x}_k)\right]^{-1} \nabla J(\mathbf{x}_k) & \text{Ne} \\
-\mathbf{B}_k \nabla J(\mathbf{x}_k) & \text{qu} \\
-\nabla J(\mathbf{x}_k) + \frac{\|\nabla J(\mathbf{x}_k)\|^2}{\|\nabla J(\mathbf{x}_{k-1})\|^2} d_{k-1} & \text{co} \\
\dots\n\end{cases}
$$

gradient method N ewton method quasi-Newton methods (BFGS, ...) conjugate gradient

Reminder: derivatives and gradients

 $f : E \longrightarrow \mathbf{R}$ (*E* being of finite or infinite dimension)

Directional (or Gâteaux) derivative of f at point $x \in E$ in direction $d \in E$:

$$
\frac{\partial f}{\partial d}(x) = \hat{f}[x](d) = \lim_{\alpha \to 0} \frac{f(x + \alpha d) - f(x)}{\alpha}
$$

Example: partial derivatives $\frac{\partial f}{\partial x}$ $\frac{\partial T}{\partial x_i}$ are directional derivatives in the direction of the members of the canonical basis $(d = e_i)$

Reminder: derivatives and gradients

- $f : E \longrightarrow \mathbf{R}$ (*E* being of finite or infinite dimension)
- \triangleright Gradient (or Fréchet derivative): E being an Hilbert space, f is Fréchet differentiable at point $x \in E$ iff

 $\exists p \in E$ such that $f(x + h) = f(x) + (p, h) + o(||h||) \quad \forall h \in E$

p is the derivative or gradient of f at point x, denoted $f'(x)$ or $\nabla f(x)$.

 $h \rightarrow (p(x), h)$ is a linear function, called differential function or tangent linear function or Jacobian of f at point x

Reminder: derivatives and gradients

 $f : E \longrightarrow \mathbf{R}$ (*E* being of finite or infinite dimension)

 \triangleright Gradient (or Fréchet derivative): E being an Hilbert space, f is Fréchet differentiable at point $x \in E$ iff

 $\exists p \in E$ such that $f(x + h) = f(x) + (p, h) + o(||h||) \quad \forall h \in E$

p is the derivative or gradient of f at point x, denoted $f'(x)$ or $\nabla f(x)$.

 $h \rightarrow (p(x), h)$ is a linear function, called differential function or tangent linear function or Jacobian of f at point x

► Important (obvious) relationship:
$$
\frac{\partial f}{\partial d}(x) = (\nabla f(x), d)
$$

The computation of $\nabla J(\mathbf{x}_k)$ may be difficult if the dependency of J with regard to the control variable **x** is not direct.

Example:

- \blacktriangleright $u(x)$ solution of an ODE
- \triangleright K a coefficient of this ODF
- \blacktriangleright $u^{\text{obs}}(x)$ an observation of $u(x)$

$$
J(K) = \frac{1}{2} ||u(x) - u^{\text{obs}}(x)||^2
$$

The computation of $\nabla J(\mathbf{x}_k)$ may be difficult if the dependency of J with regard to the control variable **x** is not direct.

Example:

- \blacktriangleright $u(x)$ solution of an ODE
- \triangleright K a coefficient of this ODF
- \blacktriangleright $u^{\text{obs}}(x)$ an observation of $u(x)$

$$
J(K) = \frac{1}{2} ||u(x) - u^{\text{obs}}(x)||^2
$$

$$
\hat{J}[K](k) = (\nabla J(K), k) = \langle \hat{u}, u - u^{\text{obs}} \rangle
$$

with $\hat{u} = \frac{\partial u}{\partial k}(K) = \lim_{\alpha \to 0} \frac{u_{K + \alpha k} - u_K}{\alpha}$

It is often difficult (or even impossible) to obtain the gradient through the computation of growth rates.

Example:

$$
\begin{cases}\n\frac{d\mathbf{x}(t)}{dt} = M(\mathbf{x}(t)) & t \in [0, T] \\
\mathbf{x}(t=0) = \mathbf{u}\n\end{cases}\n\text{ with } \mathbf{u} = \begin{pmatrix} u_1 \\
\vdots \\
u_N \end{pmatrix}
$$

$$
J(\mathbf{u}) = \frac{1}{2} \int_0^T \|\mathbf{x}(t) - \mathbf{x}^{\text{obs}}(t)\|^2 \longrightarrow \text{ requires one model run}
$$

$$
\nabla J(\mathbf{u}) = \begin{pmatrix} \frac{\partial J}{\partial u_1}(\mathbf{u}) \\ \vdots \\ \frac{\partial J}{\partial u_N}(\mathbf{u}) \end{pmatrix} \simeq \begin{pmatrix} [J(\mathbf{u} + \alpha \mathbf{e}_1) - J(\mathbf{u})] / \alpha \\ \vdots \\ [J(\mathbf{u} + \alpha \mathbf{e}_N) - J(\mathbf{u})] / \alpha \end{pmatrix}
$$

\n $\longrightarrow N + 1$ model runs

In actual applications like meteorology / oceanography, $\mathcal{N} = [\mathbf{u}] = \mathcal{O}(10^6 - 10^9) \quad \longrightarrow \mathsf{this}$ method cannot be used.

Alternatively, the adjoint method provides a very efficient way to compute ∇J.

In actual applications like meteorology / oceanography, $\mathcal{N} = [\mathbf{u}] = \mathcal{O}(10^6 - 10^9) \quad \longrightarrow \mathsf{this}$ method cannot be used.

Alternatively, the adjoint method provides a very efficient way to compute ∇J.

On the contrary, do not forget that, if the size of the control variable is very small (< 10) , ∇J can be easily estimated by the computation of growth rates.

Reminder: adjoint operator

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar products). Let $A: \mathcal{X} \longrightarrow \mathcal{Y}$ an operator. The adjoint operator $A^*: \mathcal{Y} \longrightarrow \mathcal{X}$ is defined by:

In the case where $\overline{\mathcal{X}}$ and $\overline{\mathcal{Y}}$ are Hilbert spaces and \overline{A} is linear, then A ∗ always exists (and is unique).

Reminder: adjoint operator

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar products). Let $A: \mathcal{X} \longrightarrow \mathcal{Y}$ an operator. The adjoint operator $A^*: \mathcal{Y} \longrightarrow \mathcal{X}$ is defined by:

In the case where $\mathcal X$ and $\mathcal Y$ are Hilbert spaces and A is linear, then A ∗ always exists (and is unique).

 $A:{\sf l \! R}^n \longrightarrow {\sf l \! R}^m$ a linear operator (i.e. a matrix). Then its adjoint operator \mathcal{A}^* (w.r. to Euclidian norms) is $\mathcal{A}^\mathcal{T}.$

The assimilation problem

$$
\triangleright \qquad \left\{ \begin{array}{ll} -u''(x) + c(x) \ u'(x) = f(x) & x \in]0,1[\\ u(0) = u(1) = 0 & f \in L^2([0,1[)
$$

- \blacktriangleright c(x) is unknown
- \blacktriangleright $u^{\text{obs}}(x)$ an observation of $u(x)$

• Cost function:
$$
J(c) = \frac{1}{2} \int_0^1 (u(x) - u^{\text{obs}}(x))^2 dx
$$

The assimilation problem

$$
\triangleright \qquad \left\{ \begin{array}{ll} -u''(x) + c(x) \ u'(x) = f(x) & x \in]0,1[\\ u(0) = u(1) = 0 & f \in L^2([0,1[)
$$

 \blacktriangleright c(x) is unknown

 \blacktriangleright $u^{\text{obs}}(x)$ an observation of $u(x)$

• Cost function:
$$
J(c) = \frac{1}{2} \int_0^1 (u(x) - u^{\text{obs}}(x))^2 dx
$$

$$
\nabla J \to \text{Gâteaux-derivative: } \hat{J}[c](\delta c) = \langle \nabla J(c), \delta c \rangle
$$

$$
\hat{J}[c](\delta c) = \int_0^1 \hat{u}(x) (u(x) - u^{\text{obs}}(x)) dx \quad \text{with } \hat{u} = \lim_{\alpha \to 0} \frac{u_{c+\alpha\delta c} - u_c}{\alpha}
$$

What is the equation satisfied by \hat{u} ?

$$
\begin{cases}\n-\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) & x \in]0,1[\n\text{ tangent} \\
\hat{u}(0) = \hat{u}(1) = 0 & \text{linear model}\n\end{cases}
$$

$$
\begin{cases}\n-\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) & x \in]0,1[\text{ tangent} \\
\hat{u}(0) = \hat{u}(1) = 0 & \text{linear model}\n\end{cases}
$$

Going back to \hat{J} : scalar product of the TLM with a variable p

$$
- \int_0^1 \hat{u}'' \rho + \int_0^1 c \, \hat{u}' \rho = - \int_0^1 \delta c \, u' \rho
$$

$$
\begin{cases}\n-\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) & x \in]0,1[\text{ tangent} \\
\hat{u}(0) = \hat{u}(1) = 0 & \text{linear model}\n\end{cases}
$$

Going back to \hat{J} : scalar product of the TLM with a variable p

$$
-\int_0^1 \hat{u}'' \rho + \int_0^1 c \, \hat{u}' \rho = -\int_0^1 \delta c \, u' \rho
$$

Integration by parts:

$$
\int_0^1 \hat{u}(-p'' - (c p)') = \hat{u}'(1) p(1) - \hat{u}'(0) p(0) - \int_0^1 \delta c u' p
$$

$$
\begin{cases}\n-\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) & x \in]0,1[\text{ tangent} \\
\hat{u}(0) = \hat{u}(1) = 0 & \text{linear model}\n\end{cases}
$$

Going back to \hat{J} : scalar product of the TLM with a variable p

$$
-\int_0^1 \hat{u}'' \rho + \int_0^1 c \, \hat{u}' \rho = -\int_0^1 \delta c \, u' \rho
$$

Integration by parts:

$$
\int_0^1 \hat{u}(-p'' - (c p)') = \hat{u}'(1) p(1) - \hat{u}'(0) p(0) - \int_0^1 \delta c u' p
$$

$$
\begin{cases}\n-p''(x) - (c(x) p(x))' = u(x) - u^{\text{obs}}(x) & x \in]0,1[\text{ adjoint} \\
p(0) = p(1) = 0 & \text{model}\n\end{cases}
$$

$$
\begin{cases}\n-\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) & x \in]0,1[\text{ tangent} \\
\hat{u}(0) = \hat{u}(1) = 0 & \text{linear model}\n\end{cases}
$$

Going back to \hat{J} : scalar product of the TLM with a variable p

$$
-\int_0^1 \hat{u}'' \rho + \int_0^1 c \, \hat{u}' \rho = -\int_0^1 \delta c \, u' \rho
$$

Integration by parts:

$$
\int_0^1 \hat{u}(-p'' - (c p)') = \hat{u}'(1) p(1) - \hat{u}'(0) p(0) - \int_0^1 \delta c u' p
$$

$$
\begin{cases}\n-p''(x) - (c(x) p(x))' = u(x) - u^{\text{obs}}(x) & x \in]0,1[\text{ adjoint} \\
p(0) = p(1) = 0 & \text{model}\n\end{cases}
$$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014

Remark

Formally, we just made

$$
(\mathit{TLM}(\hat{u}), p) = (\hat{u}, \mathit{TLM}^*(p))
$$

We indeed computed the adjoint of the tangent linear model.

E. Blayo - An introduction to data assimilation **Ecole GDR Egrin 2014** 48/65

Remark

Formally, we just made

$$
(\mathit{TLM}(\hat{u}), p) = (\hat{u}, \mathit{TLM}^*(p))
$$

We indeed computed the adjoint of the tangent linear model.

Actual calculations

 \blacktriangleright Solve for the direct model

$$
\begin{cases}\n-u''(x) + c(x) u'(x) = f(x) & x \in]0,1[\\
u(0) = u(1) = 0\n\end{cases}
$$

 \blacktriangleright Then solve for the adjoint model

$$
\begin{cases}\n-p''(x) - (c(x) p(x))' = u(x) - u^{\text{obs}}(x) & x \in]0,1[\\
p(0) = p(1) = 0 &\end{cases}
$$

► Hence the gradient: $\nabla J(c(x)) = -u'(x) p(x)$

Model

$$
\begin{cases}\n-u''(x) + c(x) u'(x) = f(x) & x \in]0,1[\\
u(0) = u(1) = 0 & \longrightarrow \begin{cases}\n-\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + c_i \frac{u_{i+1} - u_{i-1}}{2h} = f_i & i = 1 \dots N \\
u_0 = u_{N+1} = 0 & \end{cases}\n\end{cases}
$$

Cost function

$$
J(c) = \frac{1}{2} \int_0^1 \left(u(x) - u^{\text{obs}}(x) \right)^2 dx \longrightarrow \frac{1}{2} \sum_{i=1}^N \left(u_i - u_i^{\text{obs}} \right)^2
$$

Gˆateaux derivative:

$$
\hat{J}[c](\delta c) = \int_0^1 \hat{u}(x) \left(u(x) - u^{\text{obs}}(x) \right) dx \longrightarrow \sum_{i=1}^N \hat{u}_i \left(u_i - u_i^{\text{obs}} \right)
$$

E. Blayo - An introduction to data assimilation **Ecole GDR Egrin 2014** 49/65

Tangent linear model $\int -\hat{u}''(x) + c(x)\,\hat{u}'(x) = -\delta c(x)\,u'(x) \qquad x \in]0,1[$ $\hat{u}(0)=\hat{u}(1)=0$ $\int -\frac{\hat{u}_{i+1} - 2\hat{u}_i + \hat{u}_{i-1}}{l^2}$ $\frac{2\hat{u}_i + \hat{u}_{i-1}}{h^2} + c_i \frac{\hat{u}_{i+1} - \hat{u}_{i-1}}{2h}$ $\frac{(-\hat{u}_{i-1})}{2h} = -\delta c_i \frac{u_{i+1} - u_{i-1}}{2h}$ $\frac{z_i}{2h}$ $i = 1 \ldots N$ $\hat{u}_0 = \hat{u}_{N+1} = 0$

Adjoint model $\int -p''(x) - (c(x)p(x))' = u(x) - u^{\text{obs}}(x) \quad x \in]0,1[$ $p(0)=p(1)=0$

$$
\begin{cases}\n-\frac{p_{i+1}-2p_i+p_{i-1}}{h^2}-\frac{c_{i+1}p_{i+1}-c_{i-1}p_{i-1}}{2h}=u_i-u_i^{\text{obs}} & i=1...N \\
p_0=p_{N+1}=0 & \end{cases}
$$

Gradient

$$
\nabla J(c(x)) = -u'(x) p(x) \longrightarrow \left(\begin{array}{c} \vdots \\ -p_i \frac{u_{i+1} - u_{i-1}}{2h} \\ \vdots \end{array} \right)
$$

Remark: with matrix notations

What we do when determining the adjoint model is simply transposing the matrix which defines the tangent linear model

$$
(M\hat{U},P)=(\hat{U},M^{\mathcal{T}}\,P)
$$

In the preceding example:

$$
\mathbf{M}\hat{\mathbf{U}} = \mathbf{F} \quad \text{with } \mathbf{M} = \begin{bmatrix} 2\alpha & -\alpha + \beta & 0 & \cdots & 0 \\ -\alpha - \beta & \ddots & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & -\alpha + \beta \\ 0 & \cdots & 0 & -\alpha - \beta & 2\alpha \end{bmatrix}
$$

Remark: with matrix notations

What we do when determining the adjoint model is simply transposing the matrix which defines the tangent linear model

$$
(M\hat{U},P)=(\hat{U},M^{\mathcal{T}}\,P)
$$

In the preceding example:

$$
\mathbf{M}\hat{\mathbf{U}} = \mathbf{F} \quad \text{with } \mathbf{M} = \begin{bmatrix} 2\alpha & -\alpha + \beta & 0 & \cdots & 0 \\ -\alpha - \beta & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -\alpha - \beta & 2\alpha \end{bmatrix}
$$

But **M** is generally not explicitly built in actual complex models...

A more complex (but still linear) example: control of the coefficient of a 1-D diffusion equation

$$
\begin{cases}\n\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(K(x) \frac{\partial u}{\partial x} \right) = f(x, t) & x \in]0, L[, t \in]0, T[\\
u(0, t) = u(L, t) = 0 & t \in [0, T] \\
u(x, 0) = u_0(x) & x \in [0, L]\n\end{cases}
$$

- \blacktriangleright K(x) is unknown
- \blacktriangleright $u^{\text{obs}}(x, t)$ an available observation of $u(x, t)$

Minimize
$$
J(K(x)) = \frac{1}{2} \int_0^T \int_0^L (u(x, t) - u^{\text{obs}}(x, t))^2 dx dt
$$

Gâteaux derivative

$$
\hat{J}[K](k) = \int_0^T \int_0^L \hat{u}(x,t) (u(x,t) - u^{\text{obs}}(x,t)) dx dt
$$

Gâteaux derivative

$$
\hat{J}[K](k) = \int_0^T \int_0^L \hat{u}(x,t) (u(x,t) - u^{\text{obs}}(x,t)) dx dt
$$

Tangent linear model

$$
\begin{cases}\n\frac{\partial \hat{u}}{\partial t} - \frac{\partial}{\partial x} \left(K(x) \frac{\partial \hat{u}}{\partial x} \right) = \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) & x \in]0, L[, t \in]0, T[\\
\hat{u}(0, t) = \hat{u}(L, t) = 0 & t \in [0, T] \\
\hat{u}(x, 0) = 0 & x \in [0, L]\n\end{cases}
$$

Gâteaux derivative

$$
\hat{J}[K](k) = \int_0^T \int_0^L \hat{u}(x,t) (u(x,t) - u^{\text{obs}}(x,t)) dx dt
$$

Tangent linear model

$$
\begin{cases}\n\frac{\partial \hat{u}}{\partial t} - \frac{\partial}{\partial x} \left(K(x) \frac{\partial \hat{u}}{\partial x} \right) = \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) & x \in]0, L[, t \in]0, T[\\
\hat{u}(0, t) = \hat{u}(L, t) = 0 & t \in [0, T] \\
\hat{u}(x, 0) = 0 & x \in [0, L]\n\end{cases}
$$

Adjoint model

$$
\begin{cases}\n\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(K(x) \frac{\partial p}{\partial x} \right) = u - u^{\text{obs}} & x \in]0, L[, t \in]0, T[\\
p(0, t) = p(L, t) = 0 & t \in [0, T] \\
p(x, T) = 0 & x \in [0, L] \text{ final condition }!! \to \text{backward integration}\n\end{cases}
$$

Gâteaux derivative of J

$$
\hat{J}[K](k) = \int_0^T \int_0^L \hat{u}(x, t) (u(x, t) - u^{\text{obs}}(x, t)) dx dt
$$

=
$$
\int_0^T \int_0^L k(x) \frac{\partial u}{\partial x} \frac{\partial p}{\partial x} dx dt
$$

Gradient of J

$$
\nabla J = \int_0^T \frac{\partial u}{\partial x} (.,t) \frac{\partial p}{\partial x} (.,t) dt \qquad \text{function of } x
$$

Discrete version:

same as for the preceding ODE, but with $\ \sum \sum u_i^n$ N $n=0$ $i=1$ I

Matrix interpretation: **M** is much more complex than previously !!

A nonlinear example: the Burgers' equation

The assimilation problem

$$
\begin{cases}\n\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = f & x \in]0, L[, \ t \in [0, T] \\
u(0, t) = \psi_1(t) & t \in [0, T] \\
u(L, t) = \psi_2(t) & t \in [0, T] \\
u(x, 0) = u_0(x) & x \in [0, L]\n\end{cases}
$$

 \blacktriangleright $u_0(x)$ is unknown

 $u^{\text{obs}}(x, t)$ an observation of $u(x, t)$

• Cost function:
$$
J(u_0) = \frac{1}{2} \int_0^T \int_0^L (u(x, t) - u^{\text{obs}}(x, t))^2 dx dt
$$

Gâteaux derivative

$$
\hat{J}[u_0](h_0) = \int_0^T \int_0^L \hat{u}(x,t) (u(x,t) - u^{\text{obs}}(x,t)) dx dt
$$

Gâteaux derivative

$$
\hat{J}[u_0](h_0) = \int_0^T \int_0^L \hat{u}(x, t) (u(x, t) - u^{\text{obs}}(x, t)) dx dt
$$

Tangent linear model

$$
\left\{\begin{array}{ll}\displaystyle\frac{\partial \hat{u}}{\partial t}+\frac{\partial (u\hat{u})}{\partial x}-\nu\,\frac{\partial^2 \hat{u}}{\partial x^2}=0 & x\in]0,L[, \, t\in [0,T] \\ \hat{u}(0,t)=0 & t\in [0,T] \\ \hat{u}(L,t)=0 & t\in [0,T] \\ \hat{u}(x,0)=h_0(x) & x\in [0,L]\end{array}\right.
$$

Gâteaux derivative

$$
\hat{J}[u_0](h_0) = \int_0^T \int_0^L \hat{u}(x, t) (u(x, t) - u^{\text{obs}}(x, t)) dx dt
$$

Tangent linear model

$$
\left\{\begin{array}{ll}\displaystyle\frac{\partial \hat{u}}{\partial t}+\frac{\partial (u\hat{u})}{\partial x}-\nu\,\frac{\partial^2 \hat{u}}{\partial x^2}=0 & x\in]0,L[, \, t\in [0,\,T] \\ \hat{u}(0,t)=0 & t\in [0,\,T] \\ \hat{u}(L,t)=0 & t\in [0,\,T] \\ \hat{u}(x,0)=h_0(x) & x\in [0,\,L] \end{array}\right.
$$

Adjoint model

yose_p

$$
\begin{cases}\n\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \nu \frac{\partial^2 p}{\partial x^2} = (u - u^{\text{obs}}) & x \in]0, L[, t \in [0, T] \\
p(0, t) = 0 & t \in [0, T] \\
p(L, t) = 0 & t \in [0, T] \\
p(x, T) = 0 & x \in [0, L] \text{ final condition }!! \rightarrow \text{backward integration} \\
\frac{1}{2} & \text{E. Blayo - An introduction to data assimilation} \\
\end{cases}
$$

Gâteaux derivative of J

$$
\hat{J}[u_0](h_0) = \int_0^T \int_0^L \hat{u}(x, t) (u(x, t) - u^{\text{obs}}(x, t)) dx dt
$$

= $-\int_0^L h_0(x) p(x, 0) dx$

Gradient of J

$$
\nabla J = -p(.,0) \qquad \text{function of } x
$$

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 58/65

Derivation and validation of an adjoint code

Writing an adjoint code

- \triangleright obeys systematic rules
- \triangleright is not the most interesting task you can imagine
- \blacktriangleright there exists automatic differentiation softwares: −→ cf http://www.autodiff.org

Validation tests

- \triangleright of the tangent linear model: compare $M(x + \delta x) M(x)$ with **M**[x](δx) for small values of $\|\delta x\|$
- **►** of the adjoint model: compare (Mx, z) with (x, M^*z)
- \triangleright of the gradient: compare the directional derivative $(\nabla J(x), d)$ with the growth rate $\frac{J(x+\alpha d)-J(x)}{\alpha}$ (where $\nabla J(x)$ is the gradient given by the adjoint code)

Possible other uses for an adjoint model

The (local) sensitivity problem

How much is a particular model output Z_{out} sensitive to any change in a particular model input c_{in} ? $\longrightarrow \nabla_{c_{in}}Z_{out}$ N

$$
J_o(\mathbf{x}_0) = \frac{1}{2} \sum_{i=0}^{N} ||H_i(M_{0 \to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)||_o^2 \quad \text{ is replaced by } Z_{out}(c_{in}).
$$

Possible other uses for an adjoint model

The (local) sensitivity problem

How much is a particular model output Z_{out} sensitive to any change in a particular model input c_{in} ? $\longrightarrow \nabla_{c_{in}}Z_{out}$ $J_o({\bf x}_0) = \frac{1}{2}$ \sum_{λ}^{N} $i=0$ $\|H_i(M_{0\to t_i}(\mathbf{x}_0)) - \mathbf{y}(t_i)\|_o^2$ is replaced by $Z_{out}(c_{in}).$

The stability problem

Let consider a dynamical system: $\mathbf{x}(t)$ the state vector, $M_{t_1 \rightarrow t_2}$ the model between t_1 and t_2 .

Find the optimal perturbation $z_1^*(t_1)$ that maximizes

$$
\rho\left(\mathsf{z}(t_1)\right) = \frac{\|M_{t_1 \rightarrow t_2}\left(\mathsf{x}(t_1) + \mathsf{z}(t_1)\right) - M_{t_1 \rightarrow t_2}\left(\mathsf{x}(t_1)\right)\|}{\|\mathsf{z}(t_1)\|}
$$

 $\mathbf{M}^*_{t_1\rightarrow t_2}$ M $_{t_1\rightarrow t_2}$ (singular vector theory)

Summary

In summary

- \triangleright Several methods, either variational or statistical, that faces the same difficulties: non linearities, huge dimension, poorly known error statistics...
- \blacktriangleright Variational methods:
	- \triangleright a series of approximations of the cost function, corresponding to a series of methods
	- \triangleright the more sophisticated ones (4D-Var, incremental 4D-Var) require the tangent linear and adjoint models (the development of which is a real investment)
- \blacktriangleright Statistical methods:
	- \triangleright extended Kalman filter handle (weakly) non linear problems (requires the TL model)
	- **Exercice Figure 2** reduced order Kalman filters address huge dimension problems
	- \triangleright a quite efficient method, addressing both problems: ensemble Kalman filters (EnKF)
	- \blacktriangleright these are so called "Gaussian filters"

P particle filters: currently being developed - fully Bayesian approach still limited to low dimension problems

Some present research directions

- \triangleright new methods: less expensive, more robust w.r.t. nonlinearities and/or non gaussianity (particle filters, En4DVar, BFN...)
- \triangleright better management of errors (prior statistics, identification, a posteriori validation...)
- \triangleright "complex" observations (images, Lagrangian data...)
- \triangleright new application domains (often leading to new methodological questions)
- \triangleright definition of observing systems, sensitivity analysis...

Some references

- 1. BLAYO E. and M. NODET, 2012: Introduction à l'assimilation de données variationnelle. Lecture notes for UJF Master course on data assimilation. https://team.inria.fr/moise/files/2012/03/Methodes-Inverses-Var-M2-math-2009.pdf
- 2. Bocquet M., 2014 : Introduction aux principes et méthodes de l'assimilation de données en géophysique. Lecture notes for ENSTA - ENPC data assimilation course. http://cerea.enpc.fr/HomePages/bocquet/Doc/assim-mb.pdf
- 3. BOCQUET M., E. COSME AND E. BLAYO (EDS.), 2014: Advanced Data Assimilation for Geosciences. Oxford University Press.
- 4. BOUTTIER F. and P. Courtier, 1999: Data assimilation, concepts and methods. Meteorological training course lecture series ECMWF, European Center for Medium range Weather Forecast, Reading, UK. http://www.ecmwf.int/newsevents/training/rcourse notes/DATA ASSIMILATION/ ASSIM CONCEPTS/Assim concepts21.html
- 5. Cohn S., 1997: An introduction to estimation theory. Journal of the Meteorological Society of Japan, **75**, 257-288.
- 6. Daley R., 1993: Atmospheric data analysis. Cambridge University Press.
- 7. Evensen G., 2009: Data assimilation, the ensemble Kalman filter. Springer.
- 8. KALNAY E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge University Press.
- 9. LAHOZ W., B. KHATTATOV AND R. MENARD (EDS.), 2010: Data assimilation. Springer.
- 10. Rodgers C., 2000: Inverse methods for atmospheric sounding. World Scientific, Series on Atmospheric Oceanic and Planetary Physics.
- 11. Tarantola A., 2005: Inverse problem theory and methods for model parameter estimation. SIAM. http://www.ipgp.fr/~tarantola/Files/Professional/Books/InverseProblemTheory.pdf

Two announcements

- \triangleright CNA 2014: 5ème Colloque National d'Assimilation de données Toulouse, 1-3 décembre 2014
- \triangleright Doctoral course "Introduction to data assimilation" Grenoble, January 5-9, 2015

