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Model problem: least squares approach

Two different available measurements of a single quantity. Which
estimation for its true value ? −→ least squares approach

Example 2 obs y1 = 19◦C and y2 = 21◦C of the (unknown) present
temperature x .

I Let J(x) = 1
2
[
(x − y1)

2 + (x − y2)
2]

I Minx J(x) −→ x̂ =
y1 + y2

2 = 20◦C
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Model problem: least squares approach
Observation operator If 6= units: y1 = 66.2◦F and y2 = 69.8◦F

I Let H(x) = 9
5x + 32

I Let J(x) = 1
2
[
(H(x)− y1)

2 + (H(x)− y2)
2]

I Minx J(x) −→ x̂ = 20◦C

Drawback # 1: if observation units are inhomogeneous
y1 = 66.2◦F and y2 = 21◦C

I J(x) = 1
2
[
(H(x)− y1)

2 + (x − y2)
2] −→ x̂ = 19.47◦C !!

Drawback # 2: if observation accuracies are inhomogeneous
If y1 is twice more accurate than y2, one should obtain x̂ =

2y1 + y2
3 = 19.67◦C

−→ J should be J(x) = 1
2

[(
x − y1

1/2

)2
+

(
x − y2

1

)2
]
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Model problem: statistical approach

Reformulation in a probabilistic framework:
I the goal is to estimate a scalar value x

I yi is a realization of a random variable Yi

I One is looking for an estimator (i.e. a r.v.) X̂ that is
I linear: X̂ = α1Y1 + α2Y2 (in order to be simple)
I unbiased: E (X̂ ) = x (it seems reasonable)
I of minimal variance: Var(X̂ ) minimum (optimal accuracy)

−→ BLUE (Best Linear Unbiased Estimator)
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Model problem: statistical approach
Let Yi = x + εi with

Hypotheses
I E (εi) = 0 (i = 1, 2) unbiased measurement devices
I Var(εi) = σ2

i (i = 1, 2) known accuracies
I Cov(ε1, ε2) = 0 independent measurement errors

BLUE

X̂ =

1
σ2

1
Y1 +

1
σ2

2
Y2

1
σ2

1
+

1
σ2

2

Its accuracy:
[
Var(X̂ )

]−1
=

1
σ2

1
+

1
σ2

2
accuracies are added
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Model problem: statistical approach

Variational equivalence
This is equivalent to the problem:

Minimize J(x) = 1
2

[
(x − y1)

2

σ2
1

+
(x − y2)

2

σ2
2

]

Remarks:
I This answers the previous problems of sensitivity to inhomogeneous

units and insensitivity to inhomogeneous accuracies
I This gives a rationale for choosing the norm for defining J

I J ′′(x̂)︸ ︷︷ ︸
convexity

=
1
σ2

1
+

1
σ2

2
= [Var(x̂)]−1︸ ︷︷ ︸

accuracy
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Model problem: formulation background + observation

If one considers that y1 is a prior (or background) estimate xb for x , and
y2 = y is an independent observation, then:

J(x) = 1
2
(x − xb)

2

σ2
b︸ ︷︷ ︸

Jb

+
1
2
(x − y)2

σ2
o︸ ︷︷ ︸

Jo

and

x̂ =

1
σ2

b
xb +

1
σ2

o
y

1
σ2

b
+

1
σ2

o

= xb +
σ2

b
σ2

b + σ2
o︸ ︷︷ ︸

gain

(y − xb)︸ ︷︷ ︸
innovation
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Model problem: Bayesian approach
One can also consider x as a realization of a r.v. X , and be interested in
the pdf p(X |Y ).

Several optimality criteria
I minimum variance: X̂MV such that the spread around it is minimal

−→ X̂MV = E (X |Y )

I maximum a posteriori: most probable value of X given Y
−→ X̂MAP such that ∂p(X |Y )

∂X = 0

I maximum likelihood: X̂ML that maximizes p(Y |X )

I Based on the Bayes rule:
P(X = x |Y = y) = P(Y = y |X = x)P(X = x)

P(Y = y)
I requires additional hypotheses on prior pdf for X and for Y |X
I In the Gaussian case, these estimations coincide with the BLUE
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp
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Generalization: variational approach
Stationary case: J(x) = 1

2 ‖x− xb‖2
b︸ ︷︷ ︸

background term Jb

+
1
2 ‖H(x)− y‖2

o︸ ︷︷ ︸
observation term Jo

Time dependent case:

J(x0) =
1
2 ‖x0 − xb

0‖2
b +

1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o

=
1
2 ‖x0 − xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))− y(ti)‖2

o
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Generalization: statistical approach
Let Xb = x + εb and Y = Hx + εo

Hypotheses:
I E (εb) = 0 unbiased background
I E (εo) = 0 unbiased measurement devices
I Cov(εb, εo) = 0 independent background and observation errors
I Cov(εb) = B et Cov(εo) = R known accuracies and covariances

Statistical approach: BLUE
X̂ = Xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸

gain matrix

(Y−HXb)︸ ︷︷ ︸
innovation vector

with
[
Cov(X̂)

]−1
= B−1 + HT R−1H accuracies are added
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Links between both approaches
Statistical approach: BLUE

X̂ = Xb + (B−1 + HT R−1H)−1HT R−1(Y−HXb)

with Cov(X̂) = (B−1 + HT R−1H)−1

Variational approach in the linear stationary case
J(x) =

1
2 ‖x− xb‖2

b +
1
2 ‖H(x)− y‖2

o

=
1
2 (x− xb)T B−1(x− xb) +

1
2 (Hx− y)T R−1(Hx− y)

min
x∈IRn

J(x) −→ x̂ = xb + (B−1 + HT R−1H)−1HT R−1 (y−Hxb)

Same remarks as previously
I The statistical approach rationalizes the choice of the norms for Jo and Jb

in the variational approach.

I
[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= B−1 + HT R−1H = Hess(J)︸ ︷︷ ︸
convexity
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If the problem is time dependent

Dynamical system: xt(tk+1) = M(tk , tk+1) xt(tk) + e(tk)

I xt(tk) true state at time tk

I M(tk , tk+1) model assumed linear between tk and tk+1

I e(tk) model error at time tk

Observations yk distributed in time.

Hypotheses
I e(tk) is unbiased, with covariance matrix Qk

I e(tk) and e(tl) are independent (k 6= l)
I Unbiased observation yk , with error covariance matrix Rk

I e(tk) and analysis error xa(tk)− xt(tk) are independent
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If the problem is time dependent
Kalman filter (Kalman and Bucy, 1961)
Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xf
k+1 = Mk,k+1 xa

k Forecast
Pf

k+1 = Mk,k+1Pa
kMT

k,k+1 + Qk

xa
k+1 = xf

k+1 + Kk+1
[
yk+1 −Hk+1xf

k+1
]

BLUE analysis
Kk+1 = Pf

k+1HT
k+1

[
Hk+1Pf

k+1HT
k+1 + Rk+1

]−1

Pa
k+1 = Pf

k+1 −Kk+1Hk+1Pf
k+1
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If the problem is time dependent
Equivalence with the variational approach
If Hk and M(tk , tk+1) are linear, and if the model is perfect (ek = 0),
then the Kalman filter and the variational method minimizing

J(x) =
1
2
(x− x0)

T P−1
0 (x− x0) +

1
2

N∑
k=0

(HkM(t0, tk)x− yk)
T R−1

k (HkM(t0, tk)x− yk)

lead to the same solution at t = tN .
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Common main methodological difficulties

I Non linearities: J non quadratic / what about Kalman filter ?
I Huge dimensions [x] = O(106 − 109): minimization of J /

management of huge matrices
I Poorly known error statistics: choice of the norms / B,R,Q

I Scientific computing issues (data management, code efficiency,
parallelization...)

−→ TODAY’s LECTURE
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Towards larger dimensions and stronger nonlinearities
Increasing the model resolution increases the size of the state variable
and, for a number of applications, allows for stronger scale interactions.

Snapshots of the surface relative vorticity in the SEABASS configuration of NEMO,
for different model resolutions: 1/4◦, 1/12◦, 1/24◦ and 1/100◦.
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Towards larger dimensions and stronger nonlinearities

This results in increased turbulent energy levels and nonlinear effects.
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Statistical approach
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Non linearities: extended Kalman filter

The Kalman filter assumes that M and H are linear. If not: linearization
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Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Gradient (or Fréchet derivative): E being an Hilbert space, f is
Fréchet differentiable at point x ∈ E iff

∃p ∈ E such that f (x + h) = f (x) + (p, h) + o(‖h‖) ∀h ∈ E

p is the derivative or gradient of f at point x , denoted f ′(x) or
∇f (x).

� h→ (p(x), h) is a linear function, called differential function or
tangent linear function or Jacobian of f at point x

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 22/65



Non linearities: extended Kalman filter

The Kalman filter assumes that M and H are linear. If not: linearization

xf
k+1 = Mk,k+1(xa

k) ' Mk,k+1(xt
k) + Mk,k+1 (xa

k − xt
k)︸ ︷︷ ︸

ea
k

=⇒ xf
k+1 − xt

k+1 = ef
k+1 = Mk,k+1(xt

k)− xt
k+1︸ ︷︷ ︸

ek

+Mk,k+1ea
k

=⇒ Pf
k+1 = Cov(ef

k+1) = Mk,k+1Pa
kMT

k,k+1 + Qk

and similarly for the other equations of the filter
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Non linearities: extended Kalman filter
Extended Kalman filter
Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xf
k+1 = Mk,k+1(xa

k) Forecast
Pf

k+1 = Mk,k+1Pa
kMT

k,k+1 + Qk

xa
k+1 = xf

k+1 + Kk+1
[
yk+1 − Hk+1(xf

k+1)
]

BLUE analysis
Kk+1 = Pf

k+1HT
k+1

[
Hk+1Pf

k+1HT
k+1 + Rk+1

]−1

Pa
k+1 = Pf

k+1 −Kk+1Hk+1Pf
k+1

I OK if nonlinearities are not too strong
I Requires the availability of Mk,k+1 and Hk

I More sophisticated approaches have been developed −→ unscented
Kalman filter (exact up to second order, requires no tangent linear
model nor Hessian matrix)
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Huge dimension: reduced order filters

As soon as [x] becomes huge, it’s no longer possible to handle the
covariance matrices.

Idea: a large part of the system variability can be represented (or is
assumed to) in a reduced dimension space.

−→ RRSQRT filter, SEEK filter, SEIK filter...
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Huge dimension: reduced order filters

Example: Reduced Rank SQuare Root filter

I Pf
0 ' Sf

0
(
Sf

0
)T with size(Sf

0) = (n, r) (r leading modes, r � n)
I This is injected in the filter equations. This leads for instance to

Pa
k = Sa

k (Sa
k)

T , with

Sa
k = Sf

k︸︷︷︸
(n,r)

Ir −ΨT
k [ΨkΨT

k + Rk ]
−1Ψk︸ ︷︷ ︸

(r ,r)


1/2

where Ψk = HkSf
k︸ ︷︷ ︸

(p,r)

Pros: most computations in low dimension
Cons: choice and time evolution of the modes
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A widely used filter: the Ensemble Kalman filter

I addresses both problems of non linearities and huge dimension
I rather simple and intuitive

Idea: generation of an ensemble of N trajectories, by N perturbations of
the set of observations (consistently with R). Standard extended Kalman
filter, with covariance matrices computed using the ensemble:

Pf
k =

1
N − 1

N∑
j=1

(xf
j,k − x̄ f

k )(xf
j,k − x̄ f

k )T with x̄ f
k =

1
N

N∑
j=1

xf
j,k

Pa
k =

1
N − 1

N∑
j=1

(xa
j,k − x̄ a

k )(xf
j,k − x̄ f

k )T with x̄ a
k =

1
N

N∑
j=1

xa
j,k

E. Blayo - An introduction to data assimilation Ecole GDR Egrin 2014 27/65



Variational approach
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Cost function and non linearities

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)

dy
dt = βx − y − xz

dz
dt = −γz + xy

Jo(y0) =
1
2

N∑
i=0

(x(ti)− xobs(ti))
2 dt
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Cost function and non linearities

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

I Adding Jb makes it “more quadratic” (Jb is a regularization term),
but J = Jo + Jb may however have several (local) minima.
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4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

4D-Var
4D-Var algorithm corresponds to the minimization of

J(x0) =
1
2 (x0−xb

0)
T B−1(x0−xb

0)+
1
2

N∑
i=0

(Hi(xi)−yi)
T R−1

i (Hi(xi)−yi)

Preconditioned cost function
Defining v = B−1/2 (x− xb), J becomes

J(v0) =
1
2 vT

0 v0 +
1
2

N∑
i=0

(Hi(B1/2vi +xb
i )−yi)

T R−1
i (Hi(B1/2vi +xb

i )−yi)
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4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

The problem is written in terms of δx0 = x0 − xb
0 , and

J(x0) =
1
2 (x0−xb

0)
T B−1(x0−xb

0)+
1
2

N∑
i=0

(Hi(xi)−yi)
T R−1

i (Hi(xi)−yi)

is approximated by a series of quadratic cost functions:

J (k+1)(δx0) =
1
2 δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δxi − di)

T R−1
i (H(k)

i δxi − di)

with δxi+1 = M(k)
i,i+1δxi and di = yi − Hi(x(k)

i )

I Kind of Gauss-Newton algorithm
I Tangent linear hypotheses must be satisfied:

M(x(k)
0 + δx0) ' M(x(k)

0 ) + M(k)δx0

Hi(x(k)
i + δxi) ' Hi(x(k)

i ) + H(k)
i δxi
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4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

Multi-incremental 4D-Var: inner loops can be made using some simplified
physics and/or coarser resolution (Courtier et al. 1994, Courtier 1995, Veersé
and Thépaut 1998, Trémolet 2005).
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4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

The 3D-FGAT (First Guess at Appropriate Time) is an approximation of
incremental 4D-Var where the tangent linear model is replaced by
identity:

J (k+1)(δx0) =
1
2 δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δx0 − di)

T R−1
i (H(k)

i δx0 − di)

−→ something between 3D and 4D

Pros:
I much cheaper, does not require the adjoint model (see later)

I algorithm is close to incremental 4D-Var
I innovation is computed at the correct observation time

Cons: approximation !
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4D-Var / Incremental 4D-Var / 3D-FGAT / 3D-Var

3D-Var: all observations are gathered as if they were all at time t0.

J(x0) =
1
2 (x0−xb

0)
T B−1(x0−xb

0)+
1
2

N∑
i=0

(Hi(x0)−yi)
T R−1

i (Hi(x0)−yi)

Pros: still cheaper
Cons: approximation !!

Remark: 3D-Var = Optimal Interpolation = Krigging
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Summary: simplifying J → a series of methods
4D-Var:

J(x0) =
1
2
(x0 − xb

0)
T B−1(x0 − xb

0) +
1
2

N∑
i=0

(Hi (xi )− yi )
T R−1

i (Hi (xi )− yi )

Incremental 4D-Var: M(x0 + δx0) ' M(x0) + Mδx0

J(k+1)(δx0) =
1
2
δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δxi − di )

T R−1
i (H(k)

i δxi − di )

Multi-incremental 4D-Var: M(x0 + δx0) ' M(x0) + S−I MLδxL
0

J(k+1)(δxL
0) =

1
2
(δxL

0)
T B−1δxL

0 +
1
2

N∑
i=0

(H(k),L
i δxL

i − di )
T R−1

i (H(k),L
i δxL

i − di )

3D-FGAT: M(x0 + δx0) ' M(x0) + δx0

J(k+1)(δx0) =
1
2
δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δx0 − di )

T R−1
i (H(k)

i δx0 − di )

3D-Var: M(x0 + δx0) ' x0 + δx0

J(x0) =
1
2
(x0 − xb

0)
T B−1(x0 − xb

0) +
1
2

N∑
i=0

(Hi (x0)− yi )
T R−1

i (Hi (x0)− yi )
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Given the size of n and p, it is generally impossible to handle explicitly H,
B and R. So, even in the simplest case (3D-Var + H linear, for which we
have an explicit expression for x̂) the direct computation of the gain matrix
is impossible.

� the computation of x̂ is performed using an optimization algorithm.
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Descent methods

Descent methods for minimizing the cost function require the knowledge
of (an estimate of) its gradient.

xk+1 = xk + αk dk

with dk =



−∇J(xk) gradient method
− [Hess(J)(xk)]

−1∇J(xk) Newton method
−Bk ∇J(xk) quasi-Newton methods (BFGS, . . . )
−∇J(xk) +

‖∇J(xk )‖2

‖∇J(xk−1)‖2 dk−1 conjugate gradient
... ...
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Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Directional (or Gâteaux) derivative of f at point x ∈ E in direction
d ∈ E :

∂f
∂d (x) = f̂ [x ](d) = lim

α→0

f (x + αd)− f (x)
α

Example: partial derivatives
∂f
∂xi

are directional derivatives in the direction of

the members of the canonical basis (d = ei )
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Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Gradient (or Fréchet derivative): E being an Hilbert space, f is
Fréchet differentiable at point x ∈ E iff

∃p ∈ E such that f (x + h) = f (x) + (p, h) + o(‖h‖) ∀h ∈ E

p is the derivative or gradient of f at point x , denoted f ′(x) or
∇f (x).

� h→ (p(x), h) is a linear function, called differential function or
tangent linear function or Jacobian of f at point x

� Important (obvious) relationship: ∂f
∂d (x) = (∇f (x), d)
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Getting the gradient is not obvious

The computation of ∇J(xk) may be difficult if the dependency of J with
regard to the control variable x is not direct.

Example:
I u(x) solution of an ODE
I K a coefficient of this ODE
I uobs(x) an observation of u(x)

I J(K ) =
1
2 ‖u(x)− uobs(x)‖2

Ĵ [K ](k) = (∇J(K ), k) =< û, u − uobs >

with û =
∂u
∂k (K ) = lim

α→0

uK+αk − uK
α
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Getting the gradient is not obvious

It is often difficult (or even impossible) to obtain the gradient through
the computation of growth rates.

Example:{ dx(t))
dt = M(x(t)) t ∈ [0,T ]

x(t = 0) = u
with u =

 u1
...

uN


J(u) = 1

2

∫ T

0
‖x(t)− xobs(t)‖2 −→ requires one model run

∇J(u) =


∂J
∂u1

(u)
...

∂J
∂uN

(u)

 '
 [J(u + α e1)− J(u)] /α

...
[J(u + α eN)− J(u)] /α


−→ N + 1 model runs
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Getting the gradient is not obvious

In actual applications like meteorology / oceanography,
N = [u] = O(106 − 109) −→ this method cannot be used.

Alternatively, the adjoint method provides a very efficient way to
compute ∇J .

On the contrary, do not forget that, if the size of the
control variable is very small (< 10), ∇J can be easily
estimated by the computation of growth rates.
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Reminder: adjoint operator
� General definition:

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar
products).
Let A : X −→ Y an operator.
The adjoint operator A∗ : Y −→ X is defined by:

∀x ∈ X ,∀y ∈ Y, < Ax , y >Y=< x ,A∗y >X

In the case where X and Y are Hilbert spaces and A is linear, then
A∗ always exists (and is unique).

� Adjoint operator in finite dimension:
A : IRn −→ IRm a linear operator (i.e. a matrix). Then its adjoint
operator A∗ (w.r. to Euclidian norms) is AT .
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The adjoint method: a simple example (continuous case)

The assimilation problem

I

{
−u′′(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0 f ∈ L2(]0, 1[)

I c(x) is unknown
I uobs(x) an observation of u(x)

I Cost function: J(c) = 1
2

∫ 1

0

(
u(x)− uobs(x)

)2 dx

∇J → Gâteaux-derivative: Ĵ[c](δc) =< ∇J(c), δc >
Ĵ[c](δc) =

∫ 1

0
û(x)

(
u(x)− uobs(x)

)
dx with û = lim

α→0

uc+αδc − uc

α

What is the equation satisfied by û ?
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The adjoint method: a simple example (continuous case)

{
−û′′(x) + c(x) û′(x) = −δc(x) u′(x) x ∈]0, 1[ tangent
û(0) = û(1) = 0 linear model

Going back to Ĵ: scalar product of the TLM with a variable p

−
∫ 1

0
û′′p +

∫ 1

0
c û′p = −

∫ 1

0
δc u′p

Integration by parts:∫ 1

0
û (−p′′ − (c p)′) = û′(1)p(1)− û′(0)p(0) −

∫ 1

0
δc u′p

{
−p′′(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[ adjoint
p(0) = p(1) = 0 model

Then ∇J(c(x)) = −u′(x) p(x)
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The adjoint method: a simple example (continuous case)

Remark
Formally, we just made

(TLM(û), p) = (û,TLM∗(p))

We indeed computed the adjoint of the tangent linear model.

Actual calculations
I Solve for the direct model{

−u”(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0

I Then solve for the adjoint model{
−p”(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[
p(0) = p(1) = 0

I Hence the gradient: ∇J(c(x)) = −u′(x) p(x)
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The adjoint method: a simple example (discrete case)

Model{
−u′′(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0

−→
{
−

ui+1 − 2ui + ui−1
h2 + ci

ui+1 − ui−1
2h

= fi i = 1 . . .N
u0 = uN+1 = 0

Cost function
J(c) =

1
2

∫ 1

0

(
u(x)− uobs(x)

)2
dx −→

1
2

N∑
i=1

(
ui − uobs

i

)2

Gâteaux derivative:
Ĵ[c](δc) =

∫ 1

0
û(x)

(
u(x)− uobs(x)

)
dx −→

N∑
i=1

ûi
(

ui − uobs
i

)
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The adjoint method: a simple example (discrete case)

Tangent linear model{
−û′′(x) + c(x) û′(x) = −δc(x) u′(x) x ∈]0, 1[
û(0) = û(1) = 0{
−

ûi+1 − 2ûi + ûi−1
h2 + ci

ûi+1 − ûi−1
2h

= −δci
ui+1 − ui−1

2h
i = 1 . . .N

û0 = ûN+1 = 0

Adjoint model{
−p′′(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[
p(0) = p(1) = 0

{
−

pi+1 − 2pi + pi−1
h2 −

ci+1 pi+1 − ci−1pi−1
2h

= ui − uobs
i i = 1 . . .N

p0 = pN+1 = 0

Gradient

∇J(c(x)) = −u′(x) p(x) −→


...

−pi
ui+1 − ui−1

2h
...
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The adjoint method: a simple example (discrete case)

Remark: with matrix notations
What we do when determining the adjoint model is simply transposing
the matrix which defines the tangent linear model

(MÛ,P) = (Û,MT P)

In the preceding example:

MÛ = F with M =



2α −α + β 0 · · · 0

−α− β
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −α + β
0 · · · 0 −α− β 2α


α = 1/h2, β = ci/2h

But M is generally not explicitly built in actual complex models...
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A more complex (but still linear) example: control of the
coefficient of a 1-D diffusion equation


∂u
∂t −

∂

∂x

(
K (x)∂u

∂x

)
= f (x , t) x ∈]0, L[, t ∈]0,T [

u(0, t) = u(L, t) = 0 t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I K (x) is unknown
I uobs(x , t) an available observation of u(x , t)

Minimize J(K (x)) = 1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt
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Gâteaux derivative

Ĵ[K ](k) =
∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

Tangent linear model
∂û
∂t −

∂

∂x

(
K (x)∂û

∂x

)
=

∂

∂x

(
k(x)∂u

∂x

)
x ∈]0, L[, t ∈]0,T [

û(0, t) = û(L, t) = 0 t ∈ [0,T ]
û(x , 0) = 0 x ∈ [0, L]

Adjoint model
∂p
∂t +

∂

∂x

(
K (x)∂p

∂x

)
= u − uobs x ∈]0, L[, t ∈]0,T [

p(0, t) = p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration
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Gâteaux derivative of J

Ĵ[K ](k) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

=

∫ T

0

∫ L

0
k(x)∂u

∂x
∂p
∂x dx dt

Gradient of J

∇J =

∫ T

0

∂u
∂x (., t)

∂p
∂x (., t) dt function of x
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Discrete version:

same as for the preceding ODE, but with
N∑

n=0

I∑
i=1

un
i

Matrix interpretation: M is much more complex than previously !!
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A nonlinear example: the Burgers’ equation

The assimilation problem
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) t ∈ [0,T ]
u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I u0(x) is unknown
I uobs(x , t) an observation of u(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt
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Gâteaux derivative

Ĵ[u0](h0) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

Tangent linear model
∂û
∂t +

∂(uû)
∂x − ν ∂

2û
∂x2 = 0 x ∈]0, L[, t ∈ [0,T ]

û(0, t) = 0 t ∈ [0,T ]
û(L, t) = 0 t ∈ [0,T ]
û(x , 0) = h0(x) x ∈ [0, L]

Adjoint model
∂p
∂t + u ∂p

∂x +ν
∂2p
∂x2 =

(
u − uobs) x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 t ∈ [0,T ]
p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration
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2û
∂x2 = 0 x ∈]0, L[, t ∈ [0,T ]
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û(x , 0) = h0(x) x ∈ [0, L]

Adjoint model
∂p
∂t + u ∂p

∂x +ν
∂2p
∂x2 =

(
u − uobs) x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 t ∈ [0,T ]
p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration
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Gâteaux derivative of J

Ĵ[u0](h0) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

= −
∫ L

0
h0(x)p(x , 0) dx

Gradient of J
∇J = −p(., 0) function of x
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Derivation and validation of an adjoint code
Writing an adjoint code

I obeys systematic rules
I is not the most interesting task you can imagine
I there exists automatic differentiation softwares:
−→ cf http://www.autodiff.org

Validation tests
I of the tangent linear model: compare M(x + δx)−M(x) with

M[x ](δx) for small values of ‖δx‖
I of the adjoint model: compare (Mx , z) with (x ,M∗z)
I of the gradient: compare the directional derivative (∇J(x), d) with

the growth rate J(x + αd)− J(x)
α

(where ∇J(x) is the gradient given
by the adjoint code)
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Possible other uses for an adjoint model
The (local) sensitivity problem
How much is a particular model output Zout sensitive to any change in a
particular model input cin ? −→ ∇cin Zout

Jo(x0) =
1
2

N∑
i=0
‖Hi(M0→ti (x0))− y(ti)‖2

o is replaced by Zout(cin).

The stability problem
Let consider a dynamical system: x(t) the state vector, Mt1→t2 the model
between t1 and t2.

Find the optimal perturbation z∗1(t1) that maximizes

ρ (z(t1)) =
‖Mt1→t2 (x(t1) + z(t1))−Mt1→t2 (x(t1)) ‖

‖z(t1)‖

−→ leading eigenvectors of M∗t1→t2
Mt1→t2 (singular vector theory)
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Summary
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In summary
I Several methods, either variational or statistical, that faces the

same difficulties: non linearities, huge dimension, poorly known
error statistics...

I Variational methods:
I a series of approximations of the cost function, corresponding to a

series of methods
I the more sophisticated ones (4D-Var, incremental 4D-Var) require

the tangent linear and adjoint models (the development of which is
a real investment)

I Statistical methods:
I extended Kalman filter handle (weakly) non linear problems

(requires the TL model)
I reduced order Kalman filters address huge dimension problems
I a quite efficient method, addressing both problems: ensemble

Kalman filters (EnKF)
I these are so called “Gaussian filters”

I particle filters: currently being developed - fully Bayesian approach -
still limited to low dimension problems
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Some present research directions

I new methods: less expensive, more robust w.r.t. nonlinearities
and/or non gaussianity (particle filters, En4DVar, BFN...)

I better management of errors (prior statistics, identification, a posteriori
validation...)

I “complex” observations (images, Lagrangian data...)

I new application domains (often leading to new methodological questions)

I definition of observing systems, sensitivity analysis...
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Two announcements

I CNA 2014: 5ème Colloque National d’Assimilation de données
Toulouse, 1-3 décembre 2014

I Doctoral course “Introduction to data assimilation”
Grenoble, January 5-9, 2015
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