A new Well-Balanced scheme for a hyperbolic model of chemotaxis

Christophe Berthon, Anaïs Crestetto and Françoise Foucher

LMJL, Université de Nantes ANR GEONUM

Deuxième école EGRIN July 1, 2014

Hyperbolic model of chemotaxis

$$
\partial_t \rho + \partial_x (\rho u) = 0, \qquad (1)
$$

$$
\partial_t (\rho u) + \partial_x (\rho u^2 + \rho) = \chi \rho \partial_x \phi - \alpha \rho u, \tag{2}
$$

$$
\partial_t \phi - D \partial_{xx} \phi = a \rho - b \phi, \qquad (3)
$$

where

$$
- \rho(x, t) \geq 0
$$
: particles density,

- $u(x,t) \in \mathbb{R}$: mean velocity,
- $-\phi(x,t) \geq 0$: concentration of chemoattractant,
- $p\left(\rho\right)=\varepsilon\rho^{\gamma}$: pressure law, with $\gamma>1$ adiabatic exponent and $\varepsilon > 0$ a constant.

$$
- \chi \geq 0, \ \alpha \geq 0, \ D > 0, \ a > 0 \ \text{and} \ b > 0 \ \text{some parameters.}
$$

Objectives

• Preserve equilibrium states (at rest, with $u = 0$), that are given by

$$
\begin{cases} \frac{\varepsilon}{\chi} \frac{\gamma}{\gamma - 1} \rho^{\gamma - 1} - \phi = K, \\ -D \partial_{xx} \phi = a \rho - b \phi, \end{cases}
$$
 (4)

with a constant K

• W-B scheme on the hyperbolic part $(1)-(2)^{1,2}$ $(1)-(2)^{1,2}$ $(1)-(2)^{1,2}$, and also on the equation [\(3\)](#page-1-3) for ϕ .

¹ Natalini, Ribot, Twarogowska, CMS 2014.

²Twarogowska, PhD Thesis 2011.

Outline

- Hyperbolic model
- Full model
- Numerical results

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Hyperbolic model

We first look at the two first equation $(1)-(2)$ $(1)-(2)$, that we rewrite as

$$
\partial_t w + \partial_x F(w) = S(w) \tag{5}
$$

with

$$
w = \begin{pmatrix} \rho \\ \rho u \end{pmatrix}, F(w) = \begin{pmatrix} \rho u \\ \rho u^2 + \rho \end{pmatrix} \text{ and } S(w) = \begin{pmatrix} 0 \\ \chi \rho \partial_x \phi - \alpha \rho u \end{pmatrix},
$$

considering ϕ as a known source term.

- First study: without friction ($\alpha = 0$).
- Second study: with friction $(\alpha > 0)$.

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Approximate Riemann solver

Approximate Riemann solver $\tilde{w}(\frac{x}{t})$ $\frac{x}{t}$, w_L , w_R) defined by:

• velocities
$$
\lambda_L < 0 < \lambda_R
$$
:

$$
\lambda_L = \min(0^-, \lambda_L^-, \lambda_R^-) \quad \text{and} \quad \lambda_R = \max(0^+, \lambda_L^+, \lambda_R^+),
$$

where λ_{L}^{\pm} and λ_{R}^{\pm} denote the eigenvalues of the flux Jacobian matrix:

$$
\lambda^{\pm} = u \pm c
$$
 where $c = c(\rho) = \sqrt{P'(\rho)} = \sqrt{\varepsilon \gamma \rho^{\gamma - 1}},$

- intermediate states w_L^* and w_R^* (will be defined later),
- the CFL condition: $\frac{\Delta t}{\Delta x}$ max $(|\lambda_L|, |\lambda_R|) \leq \frac{1}{2}$ $\frac{1}{2}$.

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

$$
\underbrace{\frac{1}{\Delta x}\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}}\tilde{w}(\frac{x}{\Delta t},w_L,w_R)dx}_{\tilde{A}}=\underbrace{\frac{1}{\Delta x}\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}}w_{\mathcal{R}}(\frac{x}{\Delta t},w_L,w_R)dx}_{A_{\mathcal{R}}},
$$

with $w_{\mathcal{R}}(\frac{x}{t})$ $\frac{x}{t}$, w_L , w_R) the exact solution of the Riemann problem. • Left side:

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

$$
\partial_t w + \partial_x F(w) = S(w) \qquad (5)
$$

• Right side (by integrating on $[0, \Delta t] \times [-\frac{\Delta x}{2}, \frac{\Delta x}{2}]$ the exact equation [\(5\)](#page-4-1)) in the case $\alpha = 0$:

$$
A_{\mathcal{R}} = \frac{1}{2} (w_L + w_R) - \frac{\Delta t}{\Delta x} (F(w_R) - F(w_L)) + \Delta t \begin{pmatrix} 0 \\ S_{\mathcal{R}} \end{pmatrix}.
$$

• Exact source term $S_{\mathcal{R}} = \frac{1}{\Delta t}$ $\frac{1}{\Delta t \Delta x} \int_0^{\Delta t} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \chi \rho \partial_x \phi \mathrm{d}x \mathrm{d}t$ approximated by S^* .

• Four other unknowns:
$$
w_L^* = \begin{pmatrix} \rho_L^* \\ \rho_L^* u_L^* \end{pmatrix}
$$
 and $w_R^* = \begin{pmatrix} \rho_R^* \\ \rho_R^* u_R^* \end{pmatrix}$.

 \rightarrow We need 5 equations. \mathbf{w}_{L} W_R^* WR Wı $\Lambda x/2$ Ω $\Lambda x/2$ C. Berthon, A. Crestetto, F. Foucher [W-B scheme for a model of chemotaxis 8/31](#page-0-0)

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

• Two first equation:
$$
\tilde{A} = A_{R} \Leftrightarrow
$$

$$
\lambda_L (\rho_L - \rho_L^*) + \lambda_R (\rho_R^* - \rho_R) = \rho_L u_L - \rho_R u_R,
$$

$$
\lambda_L (\rho_L u_L - \rho_L^* u_L^*) + \lambda_R (\rho_R^* u_R^* - \rho_R u_R) = \rho_L u_L^2 + p_L - \rho_R u_R^2 - p_R + \Delta x S^*.
$$

• Third equation:
$$
\rho_L^* u_L^* = \rho_R^* u_R^* =: q^*
$$
.

• Two last equations: study the steady states at rest.

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Steady states at rest

• Steady states at rest associated to (5) given by: $\begin{cases} u = 0, \\ e - \chi d \end{cases}$ $e - \chi \phi = K$,

where $e\left(\rho\right)$ is defined by $\partial_{\mathsf{x}}e=\frac{1}{\rho}$ $\frac{1}{\rho} \partial_{\mathsf{x}} P$ which is, since $P(\rho) = \varepsilon \rho^{\gamma}$:

$$
e(\rho) = \varepsilon \frac{\gamma}{\gamma - 1} \, \rho^{\gamma - 1} + e_0
$$

with e_0 an arbitrary constant.

- In the Riemann problem: $\begin{cases}\nu_L = u_R = 0, \\
e_L = \gamma \phi_L = \epsilon\n\end{cases}$ $e_L - \chi \phi_L = e_R - \chi \phi_R = K.$
- Approximated Riemann solver preserves steady states at rest:

$$
\begin{cases}\n u_L^* = u_R^* = 0 \quad (\Rightarrow q^* = 0), \\
 e_L^* - \chi \phi_L = e_R^* - \chi \phi_R = K.\n\end{cases}
$$

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Source-term approximation³

• We are at steady state \Rightarrow $A = A_{\mathcal{R}}$ becomes

$$
\begin{cases}\n\lambda_L(\rho_L - \rho_L^*) + \lambda_R(\rho_R^* - \rho_R) = 0, \\
(\lambda_R - \lambda_L)q^* + p_R - p_L = \Delta x S^*.\n\end{cases}
$$

• We want to preserve steady states \Rightarrow we have to ensure $q^* = 0$ \Rightarrow we suggest to put the following consistent expression of S^\star :

$$
S^* = \frac{\chi}{\Delta x} \frac{p_R - p_L}{e_R - e_L} (\phi_R - \phi_L).
$$

- \rightarrow Fourth equation.
- \rightarrow Necessary condition for Well-Balanced property.

³Berthon, Chalons, submitted.

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

• For the last equation, we choose to impose

$$
e_L \frac{\rho_L^{\star}}{\rho_L} - \chi \phi_L = e_R \frac{\rho_R^{\star}}{\rho_R} - \chi \phi_R,
$$

which is consistent with $e_R - e_I = \phi_R - \phi_I$ and gives a linearization of the equation $\partial_x e = \chi \partial_x \phi$.

- \rightarrow Sufficient condition for Well-Balanced property.
	- Solving the system of five equations \Rightarrow expressions for ρ_L^* , ρ_R^* , q^* and S^* .

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Case with friction: $\alpha > 0$

• What changes? The second equation:

$$
\partial_t (\rho u) + \partial_x (\rho u^2 + \rho) = \chi \rho \partial_x \phi - \alpha \rho u.
$$

• Integrating on $[0, \Delta t] \times \left[-\frac{\Delta x}{2}, \frac{\Delta x}{2} \right]$ gives

$$
\mathcal{F}(\Delta t) = \frac{1}{2} (\rho_L u_L + \rho_R u_R) - \frac{\Delta t}{\Delta x} (\rho_R u_R^2 + p_R - \rho_L u_L^2 - p_L) + \Delta t S_R - \alpha \int_0^{\Delta t} \mathcal{F}(t) dt,
$$

where

$$
\mathcal{F}(t) = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} (\rho u)_{\mathcal{R}}(x, t) \, dx.
$$

 \rightarrow Equation in $\mathcal{F}(\Delta t)$:

$$
\mathcal{F}'(\Delta t) = \frac{1}{2}(\dots) - \frac{\Delta t}{\Delta x}(\dots) + \Delta t S_{\mathcal{R}} - \alpha \mathcal{F}(\Delta t).
$$

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

• Solution:

$$
\mathcal{F}(\Delta t) = K e^{-\alpha \Delta t} + \frac{1}{\alpha} \left[-\frac{1}{\Delta x} \left(\rho_R u_R^2 + p_R - \rho_L u_L^2 - p_L \right) + S_{\mathcal{R}} \right],
$$

with

$$
K=\frac{1}{2}(\rho_L u_L+\rho_R u_R)-\frac{1}{\alpha}\left[-\frac{1}{\Delta x}(\rho_R u_R^2+p_R-\rho_L u_L^2-p_L)+S_R\right].
$$

• HLL consistency condition: $\tilde{A}_2 = \mathcal{F}(\Delta t)$.

- Approximation of $S_{\mathcal{R}}$ in order to preserve equilibrium ($u = 0$): S^* defined previously suits.
- ρ_L^* and ρ_R^* not changed.
- q^* is the only quantity that has to be modified when taking $\alpha > 0$.

[Construction of the approx. Riemann solver without friction](#page-5-0) [Construction of the approx. Riemann solver with friction](#page-12-0) [Correction for the positivity](#page-14-0)

Correction for the positivity

Min-Max procedure in order to ensure $\rho_L^\star \geq 0$ and $\rho_R^\star \geq 0$, where

$$
\rho_L^* = \rho_L + \frac{\lambda_R \mathcal{R}}{\delta_R \lambda_L - \delta_L \lambda_R} - \delta_R \frac{\rho_L u_L - \rho_R u_R}{\delta_R \lambda_L - \delta_L \lambda_R},
$$

$$
\rho_R^* = \rho_R + \frac{\lambda_L \mathcal{R}}{\delta_R \lambda_L - \delta_L \lambda_R} - \delta_L \frac{\rho_L u_L - \rho_R u_R}{\delta_R \lambda_L - \delta_L \lambda_R},
$$

with $\delta_R := \frac{e_R}{\rho_R}, \ \delta_L := \frac{e_L}{\rho_L}$ and $\mathcal{R} := \chi(\phi_R - \phi_L) - e_R$.

- For simplicity reasons: $\lambda_R = -\lambda_L$.
- Consistency gives now:

$$
\tilde{A}_1 = A_{R,1} \Leftrightarrow \rho_L^{\star} + \rho_R^{\star} = \rho_L + \rho_R - \frac{\rho_R u_R - \rho_L u_L}{\lambda_R} =: 2\rho_{HLL}.
$$

• We take:

$$
\rho_{R}^{\star} = \min \left(\max \left(0, \rho_{R}^{\star} \right), 2 \rho_{HLL} \right),
$$

$$
\rho_{L}^{\star} = \min \left(\max \left(0, \rho_{L}^{\star} \right), 2 \rho_{HLL} \right).
$$

C. Berthon, A. Crestetto, F. Foucher [W-B scheme for a model of chemotaxis 15/31](#page-0-0)

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

Full model

We now look at the equation [\(3\)](#page-1-3) on ϕ , that we rewrite as:

$$
\partial_t \phi - D \partial_x \psi = a \rho - b \phi,
$$

where ρ is assumed to be known (since computed previously) and $\psi := \partial_{x}\phi.$

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

$$
\underbrace{\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \tilde{\phi}\left(\frac{x}{\Delta t}, \phi_L, \phi_R\right) dx}_{\tilde{A}} = \underbrace{\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \phi_R\left(\frac{x}{\Delta t}, \phi_L, \phi_R\right) dx}_{A_R},
$$

with ϕ_R the exact Riemann solver and $\tilde{\phi}$ the approximated one.

• Left side:

$$
\tilde{A} = \frac{1}{2} (\phi_L + \phi_R) + \frac{\Delta t}{\Delta x} (\lambda_L (\phi_L - \phi_L^{\star}) + \lambda_R (\phi_R^{\star} - \phi_R)).
$$

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

$$
\partial_t \phi - D \partial_x \psi = a \rho - b \phi \qquad (3)
$$

• Right side (by integrating on $[0, \Delta t] \times [-\frac{\Delta x}{2}, \frac{\Delta x}{2}]$ the exact equation [\(3\)](#page-1-3)):

$$
A_{\mathcal{R}} = \frac{1}{2} (\phi_L + \phi_R) + \frac{D \Delta t}{\Delta x} (\psi_R - \psi_L) + \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} a \rho_{\mathcal{R}} - b \phi_{\mathcal{R}} \mathrm{d}x \mathrm{d}t.
$$

• First part of the model:

$$
\frac{1}{\Delta x}\int_{-\Delta x/2}^{\Delta x/2} \rho_{\mathcal{R}}(x,t)\,\mathrm{d}x = \frac{1}{2}\big(\rho_L + \rho_R\big) - \frac{t}{\Delta x}\big(\rho_R u_R - \rho_L u_L\big).
$$

• We get:

$$
\mathcal{F}(\Delta t) := A_{\mathcal{R}} = \frac{1}{2} (\phi_L + \phi_R) + \frac{D \Delta t}{\Delta x} (\psi_R - \psi_L)
$$

+
$$
+ a \left(\frac{\Delta t}{2} (\rho_L + \rho_R) - \frac{\Delta t^2}{2 \Delta x} (\rho_R u_R - \rho_L u_L) \right) - b \int_0^{\Delta t} \mathcal{F}(t) dt.
$$

C. Berthon, A. Crestetto, F. Foucher [W-B scheme for a model of chemotaxis 18/31](#page-0-0)

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

$$
\rightarrow \text{ Equation on } \mathcal{F}(\Delta t):
$$
\n
$$
\mathcal{F}'(\Delta t) + b\mathcal{F}(\Delta t) = \frac{D}{\Delta x}(\psi_R - \psi_L) + a\left(\frac{1}{2}(\rho_L + \rho_R) - \frac{\Delta t}{\Delta x}(\rho_R u_R - \rho_L u_L)\right).
$$

• Solution:

$$
\mathcal{F}(\Delta t) = \frac{1}{2} (\phi_L + \phi_R) e^{-b\Delta t} + \alpha \Delta t + \beta \left(1 - e^{-b\Delta t} \right)
$$

with $\alpha = -\frac{\partial}{b\Delta x} (\rho_R u_R - \rho_L u_L)$ and

$$
\beta = \frac{D}{b\Delta x} (\psi_R - \psi_L) + \frac{\partial}{2b} (\rho_L + \rho_R) + \frac{\partial}{b^2 \Delta x} (\rho_R u_R - \rho_L u_L).
$$

- Consistency condition: $\tilde{A} = A_{R} = \mathcal{F}(\Delta t)$. + Choice: $\phi_L - \phi_L^* = \phi_R - \phi_R^*$. \rightarrow Expressions for ϕ_L^{\star} and ϕ_R^{\star} .
	- And what about ψ_L and ψ_R ? Answer later...

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

Finite Volumes scheme

- 1D domain [0, L] discretized by $N + 1$ points: $x_i = i\Delta x$, $i=0,\ldots,N, \ \Delta x = \frac{L}{N}$ $\frac{L}{N}$.
- Evolution in time of $w_i^n \approx \frac{1}{\Delta}$ $\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} w(x, t^n) dx$ and $\phi_i^n \approx \frac{1}{\Delta}$ $\frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}\phi\left(x,t^n\right)\mathrm{d}x$, where $t^n = n\Delta t$ for a time step Δt .
- Scheme coming from the previously defined Riemann solvers:

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

Definition of ψ_i^n i

• ψ_i^n such that good approximation of $(\partial_x \phi)_i^n$ $_{i}^{\prime\prime}$, for example of the form

$$
\psi_i^n = \frac{1}{2\Delta x} \left(\phi_{i+1}^n - \phi_{i-1}^n \right) \times 1(\Delta x)
$$

where $1(\Delta x)$ has to be consistent with 1 when Δx tends to 0.

• $1(\Delta x)$: correction term such that $\phi_i^{n+1} = \phi_i^n$ at equilibrium in the particular case $\gamma = 2$.

[Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

Equilibrium for $\gamma = 2$

Equilibrium given by:

$$
\begin{cases}\nu = 0, \\
\phi = \frac{2\varepsilon}{\chi}\rho + K, \\
D\partial_{xx}\phi - b\phi = -a\rho,\n\end{cases}\n\Rightarrow\n\begin{cases}\nu = 0, \\
\partial_{xx}\rho - \frac{\chi}{2\varepsilon D}\left(\frac{2\varepsilon b}{\chi} - a\right)\rho = Kb\frac{\chi}{2\varepsilon D}.\n\end{cases}
$$

• Solutions^{1,2}:

if $\rho = 0$: $\phi(x) = A \cosh(x\sqrt{b}) + B \sinh(x\sqrt{b}),$ if $\rho > 0$, $C < 0$: $\phi(x) = A \cos \left(x \sqrt{|C|}\right) + B \sin \left(x \sqrt{|C|}\right) - \phi_{P}$, $\rho(x) = \frac{x}{2\varepsilon} (\phi(x) - K)$, if $\rho > 0$, $C > 0$: $\phi(x) = A \cosh\left(x\sqrt{C}\right) + B \sinh\left(x\sqrt{C}\right) - \phi_p$, $\rho(x) = \frac{x}{2\varepsilon}(\phi(x) - K)$,

where A and B are some constants, $C=\frac{1}{D}$ $rac{1}{D}(b - \frac{ax}{2\varepsilon})$ $\frac{a\chi}{2\varepsilon}$) and $\phi_{\bm p}=\frac{K{\bm a}\chi}{2\varepsilon b-\varepsilon}$ $\frac{h\alpha\chi}{2\varepsilon b-a\chi}$.

¹Natalini, Ribot, Twarogowska, CMS 2014.

 2 Twarogowska, PhD Thesis 2011.

C. Berthon, A. Crestetto, F. Foucher [W-B scheme for a model of chemotaxis 22/31](#page-0-0)

[Problem and objectives](#page-1-0) [Hyperbolic model](#page-4-0) [Full model](#page-15-0) [Numerical results](#page-23-0) [Construction of the approx. Riemann solver](#page-16-0) [Full numerical scheme](#page-19-0) [W-B property](#page-20-0)

• Injecting these solutions in the Finite Volumes scheme and imposing $\phi^{n+1}_i = \phi^n_i$ gives the appropriate expression of $\mathit{1}(\Delta x)$:

if
$$
\rho = 0
$$
:
\n
$$
1(\Delta x) = \frac{\Delta x^2}{2} \frac{b}{\cos(\sqrt{b}\Delta x) - 1},
$$
\nif $\rho > 0$, $C < 0$:
\n
$$
1(\Delta x) = \frac{\Delta x^2}{2} \frac{C}{\cos(\sqrt{|C|\Delta x}) - 1},
$$
\nif $\rho > 0$, $C > 0$:
\n
$$
1(\Delta x) = \frac{\Delta x^2}{2} \frac{C}{\cosh(\sqrt{C}\Delta x) - 1}.
$$

• Expression of ψ_i^n

$$
\psi_i^n = \frac{1}{2\Delta x} \left(\phi_{i+1}^n - \phi_{i-1}^n \right) \times 1(\Delta x)
$$

with this $1(\Delta x) \Rightarrow$ steady states exactly preserved for $\gamma = 2$ and approximated for $\gamma > 2$.

• Min-Max procedure in order to ensure $\phi > 0$.

[Testcase 1](#page-23-0) [Testcase 2](#page-25-0)

Testcase 1: perturbation of an equilibrium solution

• Exact equilibrium solution^{1,2}:

$$
\phi(x) = \begin{cases}\n\frac{2\varepsilon bK}{\tau x D} \frac{\cos(\sqrt{\tau}x)}{\cos(\sqrt{\tau}x)} - \frac{aK}{\tau D}, & \text{for } x \in [0, \overline{x}], \\
-\frac{2\varepsilon K}{x} \frac{\cosh(\sqrt{\frac{b}{D}}(x-L))}{\cosh(\sqrt{\frac{b}{D}}(\overline{x}-L))}, & \text{for } x \in]\overline{x}, L], \\
\rho(x) = \begin{cases}\n\frac{x}{2\varepsilon} \phi(x) + \frac{D}{D} \frac{M\tau^{3/2}}{\tan(\sqrt{\tau}x) - \sqrt{\tau}x}, & \text{for } x \in [0, \overline{x}], \\
0, & \text{for } x \in]\overline{x}, L], \\
u(x) = 0,\n\end{cases}
$$

where
$$
\tau = \frac{1}{D} \left(\frac{\partial \chi}{2\varepsilon} - b \right)
$$
 and \overline{x} s.t. $\sqrt{\frac{b}{\tau D}} \tan(\sqrt{\tau} \overline{x}) = \tanh\left(\sqrt{\frac{b}{D}} (\overline{x} - L)\right)$.

¹Natalini, Ribot, Twarogowska, CMS 2014.

 2 Twarogowska, PhD Thesis 2011.

C. Berthon, A. Crestetto, F. Foucher [W-B scheme for a model of chemotaxis 24/31](#page-0-0)

[Testcase 1](#page-23-0) [Testcase 2](#page-25-0)

Testcase 2: influence of parameters on the steady state

• Initial conditions:
$$
ρ(x, 0) = 1 + \sin(4π|x - \frac{1}{4}|),
$$

\n $u(x, 0) = 0,$
\n $φ(x, 0) = 0.$

• Study

- Density ρ as a function of x at steady state.
- Influence of L and χ with $a = b = D = \varepsilon = 1$.
- Influence of γ with $a = 20$, $b = 10$, $D = 0.1$, $\varepsilon = 1$.
- Validation? No analytical solution. But results similar to those of Twarogowska 1,2 .

¹ Natalini, Ribot, Twarogowska, CMS 2014.

 2 Twarogowska, PhD Thesis 2011.

[Problem and objectives](#page-1-0) [Hyperbolic model](#page-4-0) [Full model](#page-15-0) [Numerical results](#page-23-0) [Testcase 1](#page-23-0) [Testcase 2](#page-25-0) Conclusions...

- HLL consistent Riemann solver.
- Positivity of ρ and ϕ .
- Equilibrium states exactly preserved when $\gamma = 2$ and well approached when $\gamma > 2$.
- No problem with vacuum $\rho = 0$.
- We can prove that the scheme is AP in the case $\alpha > 0$.

... and perspectives

- Understand the behaviour of the asymptotic-parabolic model.
- Extension of the model to the 2D.

- C. Berthon, C. Chalons, A Fully Well-Balanced, Positive and Entropy-satisfying Godunov-type method for the shallow-water equations, submitted, HAL: hal-00956799.
- R. Natalini, M. Ribot and M. Twarogowska, A Well-Balanced Numerical Scheme for a One Dimensional Quasilinear Hyperbolic Model of Chemotaxis, Commun. Math. Sci. 12 (1), pp. 13-38, 2014.
- M. Twarogowska, Numerical Approximation and Analysis of Mathematical Models Arising in Cells Movement, PhD Thesis, Università degli studi dell'Aquila, 2011.

Thank you for your attention!