A new Well-Balanced scheme for a hyperbolic model of chemotaxis

Christophe Berthon, Anaïs Crestetto and Françoise Foucher

LMJL, Université de Nantes ANR GEONUM

Deuxième école EGRIN July 1, 2014

Hyperbolic model of chemotaxis

$$\partial_t \rho + \partial_x \left(\rho u \right) = 0, \tag{1}$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + p) = \chi \rho \partial_x \phi - \alpha \rho u,$$
 (2)

$$\partial_t \phi - D \partial_{xx} \phi = a \rho - b \phi,$$
 (3)

where

–
$$ho\left(x,t
ight)\geq$$
 0: particles density,

- $u(x,t) \in \mathbb{R}$: mean velocity,
- $\phi(x, t) \geq 0$: concentration of chemoattractant,
- $p(\rho) = \varepsilon \rho^{\gamma}$: pressure law, with $\gamma > 1$ adiabatic exponent and $\varepsilon > 0$ a constant,

-
$$\chi \geq$$
 0, $lpha \geq$ 0, $D>$ 0, $a>$ 0 and $b>$ 0 some parameters.

Objectives

• Preserve equilibrium states (at rest, with *u* = 0), that are given by

$$\begin{cases} \frac{\varepsilon}{\chi} \frac{\gamma}{\gamma - 1} \rho^{\gamma - 1} - \phi &= K, \\ -D\partial_{xx} \phi &= a\rho - b\phi, \end{cases}$$
(4)

with a constant K.

• W-B scheme on the hyperbolic part (1)-(2)^{1,2}, and also on the equation (3) for ϕ .

¹Natalini, Ribot, Twarogowska, CMS 2014.

²Twarogowska, PhD Thesis 2011.

C. Berthon, A. Crestetto, F. Foucher W-B scheme for a model of chemotaxis

Outline

- Hyperbolic model
- Full model
- Numerical results

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Hyperbolic model

We first look at the two first equation (1)-(2), that we rewrite as

$$\partial_t w + \partial_x F(w) = S(w) \tag{5}$$

with

$$w = \begin{pmatrix} \rho \\ \rho u \end{pmatrix}$$
, $F(w) = \begin{pmatrix} \rho u \\ \rho u^2 + p \end{pmatrix}$ and $S(w) = \begin{pmatrix} 0 \\ \chi \rho \partial_x \phi - \alpha \rho u \end{pmatrix}$,

considering ϕ as a known source term.

- First study: without friction ($\alpha = 0$).
- Second study: with friction ($\alpha > 0$).

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Approximate Riemann solver

Approximate Riemann solver $\tilde{w}(\frac{x}{t}, w_L, w_R)$ defined by:

• velocities
$$\lambda_L < 0 < \lambda_R$$
:

 $\lambda_L = \min(0^-, \lambda_L^-, \lambda_R^-) \quad \text{and} \quad \lambda_R = \max(0^+, \lambda_L^+, \lambda_R^+),$

where λ_L^{\pm} and λ_R^{\pm} denote the eigenvalues of the flux Jacobian matrix:

$$\lambda^{\pm} = u \pm c$$
 where $c = c(
ho) = \sqrt{P'(
ho)} = \sqrt{arepsilon \gamma
ho^{\gamma-1}},$

- intermediate states w_L^{\star} and w_R^{\star} (will be defined later),
- the CFL condition: $\frac{\Delta t}{\Delta x} \max(|\lambda_L|, |\lambda_R|) \leq \frac{1}{2}$.

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

7/31

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

$$\underbrace{\frac{1}{\Delta x}\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}}\tilde{w}(\frac{x}{\Delta t},w_L,w_R)dx}_{\tilde{A}}=\underbrace{\frac{1}{\Delta x}\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}}w_{\mathcal{R}}(\frac{x}{\Delta t},w_L,w_R)dx}_{A_{\mathcal{R}}}$$

with w_R(^x/_t, w_L, w_R) the exact solution of the Riemann problem.
Left side:

$$\tilde{A} = \frac{1}{2} \left(w_L + w_R \right) + \frac{\Delta t}{\Delta x} \left(\lambda_L \left(w_L - w_L^{\star} \right) + \lambda_R \left(w_R^{\star} - w_R \right) \right).$$

$$\Delta t = \frac{\lambda_L}{\frac{\omega_L}{-\Delta x/2}} + \frac{\omega_R}{\frac{\omega_R}{\sqrt{\omega_R}}} + \frac{\lambda_R}{\frac{\omega_R}{\sqrt{\omega_R}}} + \frac{\lambda_R}{\sqrt{\omega_R}} + \frac{\lambda_R}{\frac{\omega_R}{\sqrt{\omega_R}}} + \frac{\lambda_R}{\frac{\omega_R}{\sqrt{\omega$$

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

$$\partial_t w + \partial_x F(w) = S(w)$$
 (5)

Right side (by integrating on [0, Δt] × [-Δx/2, Δx/2] the exact equation (5)) in the case α = 0:

$$A_{\mathcal{R}} = \frac{1}{2} \left(w_{L} + w_{R} \right) - \frac{\Delta t}{\Delta x} \left(F \left(w_{R} \right) - F \left(w_{L} \right) \right) + \Delta t \begin{pmatrix} 0 \\ S_{\mathcal{R}} \end{pmatrix}.$$

• Exact source term $S_{\mathcal{R}} = \frac{1}{\Delta t \Delta x} \int_{0}^{\Delta t} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \chi \rho \partial_x \phi \mathrm{d}x \mathrm{d}t$ approximated by S^* .

• Four other unknowns:
$$w_L^{\star} = \begin{pmatrix} \rho_L^{\star} \\ \rho_L^{\star} u_L^{\star} \end{pmatrix}$$
 and $w_R^{\star} = \begin{pmatrix} \rho_R^{\star} \\ \rho_R^{\star} u_R^{\star} \end{pmatrix}$.

 $\rightarrow \text{ We need 5 equations.}$ $\Delta t \xrightarrow{\lambda_L} 0 \xrightarrow{\lambda_R} \lambda_R$ $0 \xrightarrow{-\Delta x/2} 0 \xrightarrow{\Delta x/2} 0 \xrightarrow{\Delta x/2}$ C. Berthon, A. Crestetto, F. Foucher
W-B scheme for a model of chemotaxis.

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

• Two first equation:
$$\tilde{A} = A_{\mathcal{R}} \Leftrightarrow$$

$$\lambda_L (\rho_L - \rho_L^*) + \lambda_R (\rho_R^* - \rho_R) = \rho_L u_L - \rho_R u_R,$$

$$\lambda_L (\rho_L u_L - \rho_L^* u_L^*) + \lambda_R (\rho_R^* u_R^* - \rho_R u_R) = \rho_L u_L^2 + p_L - \rho_R u_R^2 - p_R + \Delta x S^*.$$

• Third equation:
$$\rho_L^{\star} u_L^{\star} = \rho_R^{\star} u_R^{\star} =: q^{\star}$$
.

• Two last equations: study the steady states at rest.

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Steady states at rest

• Steady states at rest associated to (5) given by: $\begin{cases} u = 0, \\ e - \chi \phi = K, \end{cases}$

where $e(\rho)$ is defined by $\partial_x e = \frac{1}{\rho} \partial_x P$ which is, since $P(\rho) = \varepsilon \rho^{\gamma}$:

$$e(
ho)=arepsilonrac{\gamma}{\gamma-1}\,
ho^{\gamma-1}+e_0$$

with e_0 an arbitrary constant.

- In the Riemann problem: $\begin{cases} u_L = u_R = 0, \\ e_L \chi \phi_L = e_R \chi \phi_R = K. \end{cases}$
- Approximated Riemann solver preserves steady states at rest:

$$\begin{cases} u_L^* = u_R^* = 0 \quad (\Rightarrow q^* = 0), \\ e_L^* - \chi \phi_L = e_R^* - \chi \phi_R = K. \end{cases}$$

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Source-term approximation³

• We are at steady state $\Rightarrow \tilde{A} = A_{\mathcal{R}}$ becomes

$$\begin{cases} \lambda_L(\rho_L - \rho_L^{\star}) + \lambda_R(\rho_R^{\star} - \rho_R) = 0, \\ (\lambda_R - \lambda_L)q^{\star} + p_R - p_L = \Delta x S^{\star}. \end{cases}$$

• We want to preserve steady states \Rightarrow we have to ensure $q^* = 0$ \Rightarrow we suggest to put the following consistent expression of S^* :

$$S^{\star} = \frac{\chi}{\Delta x} \frac{p_R - p_L}{e_R - e_L} \left(\phi_R - \phi_L \right).$$

 \rightarrow Fourth equation.

 $\rightarrow\,$ Necessary condition for Well-Balanced property.

³Berthon, Chalons, submitted.

C. Berthon, A. Crestetto, F. Foucher

W-B scheme for a model of chemotaxis

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

• For the last equation, we choose to impose

$$e_L \frac{\rho_L^{\star}}{\rho_L} - \chi \phi_L = e_R \frac{\rho_R^{\star}}{\rho_R} - \chi \phi_R,$$

which is consistent with $e_R - e_L = \phi_R - \phi_L$ and gives a linearization of the equation $\partial_x e = \chi \partial_x \phi$.

- \rightarrow Sufficient condition for Well-Balanced property.
 - Solving the system of five equations \Rightarrow expressions for ρ_L^{\star} , ρ_R^{\star} , q^{\star} and S^{\star} .

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Case with friction: $\alpha > 0$

• What changes? The second equation:

$$\partial_t (\rho u) + \partial_x (\rho u^2 + p) = \chi \rho \partial_x \phi - \alpha \rho u.$$

• Integrating on $[0, \Delta t] \times \left[-\frac{\Delta x}{2}, \frac{\Delta x}{2}\right]$ gives

$$\mathcal{F}\left(\Delta t\right) = \frac{1}{2} \left(\rho_L u_L + \rho_R u_R\right) - \frac{\Delta t}{\Delta x} \left(\rho_R u_R^2 + p_R - \rho_L u_L^2 - p_L\right) + \Delta t S_R - \alpha \int_0^{\Delta t} \mathcal{F}\left(t\right) \mathrm{d}t,$$

where

$$\mathcal{F}(t) = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} (\rho u)_{\mathcal{R}}(x, t) \, \mathrm{d}x.$$

 \rightarrow Equation in $\mathcal{F}(\Delta t)$:

$$\mathcal{F}'(\Delta t) = \frac{1}{2}(\dots) - \frac{\Delta t}{\Delta x}(\dots) + \Delta t S_{\mathcal{R}} - \alpha \mathcal{F}(\Delta t).$$

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity

Solution:

$$\mathcal{F}(\Delta t) = Ke^{-\alpha\Delta t} + \frac{1}{\alpha} \left[-\frac{1}{\Delta x} \left(\rho_R u_R^2 + p_R - \rho_L u_L^2 - p_L \right) + S_R \right],$$

with

$$\mathcal{K} = \frac{1}{2} \left(\rho_L u_L + \rho_R u_R \right) - \frac{1}{\alpha} \left[-\frac{1}{\Delta x} \left(\rho_R u_R^2 + p_R - \rho_L u_L^2 - p_L \right) + S_R \right].$$

• HLL consistency condition: $\tilde{A}_2 = \mathcal{F}(\Delta t)$.

- Approximation of $S_{\mathcal{R}}$ in order to preserve equilibrium (u = 0): S^* defined previously suits.
- ρ_L^{\star} and ρ_R^{\star} not changed.
- q^{\star} is the only quantity that has to be modified when taking $\alpha > 0$.

Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction **Correction for the positivity**

Correction for the positivity

Min-Max procedure in order to ensure $\rho_L^{\star} \ge 0$ and $\rho_R^{\star} \ge 0$, where

$$\rho_L^{\star} = \rho_L + \frac{\lambda_R \mathcal{R}}{\delta_R \lambda_L - \delta_L \lambda_R} - \delta_R \frac{\rho_L u_L - \rho_R u_R}{\delta_R \lambda_L - \delta_L \lambda_R},$$
$$\rho_R^{\star} = \rho_R + \frac{\lambda_L \mathcal{R}}{\delta_R \lambda_L - \delta_L \lambda_R} - \delta_L \frac{\rho_L u_L - \rho_R u_R}{\delta_R \lambda_L - \delta_L \lambda_R},$$

with $\delta_R := \frac{e_R}{\rho_R}$, $\delta_L := \frac{e_L}{\rho_L}$ and $\mathcal{R} := \chi \left(\phi_R - \phi_L \right) - e_R$.

- For simplicity reasons: $\lambda_R = -\lambda_L$.
- Consistency gives now:

$$\tilde{A}_1 = A_{\mathcal{R},1} \iff \rho_L^* + \rho_R^* = \rho_L + \rho_R - \frac{\rho_R u_R - \rho_L u_L}{\lambda_R} =: 2\rho_{HLL}.$$

• We take:

$$\begin{aligned} \rho_{R}^{\star} &= \min\left(\max\left(0,\rho_{R}^{\star}\right),2\rho_{HLL}\right),\\ \rho_{L}^{\star} &= \min\left(\max\left(0,\rho_{L}^{\star}\right),2\rho_{HLL}\right). \end{aligned}$$

C. Berthon, A. Crestetto, F. Foucher W-B scheme for a model of chemotaxis

Problem and objectives Hyperbolic model Full model Numerical results Ocnstruction of the approx. Riemann solver Full numerical scheme W-B property

Full model

We now look at the equation (3) on ϕ , that we rewrite as:

$$\partial_t \phi - D \partial_x \psi = a \rho - b \phi,$$

where ρ is assumed to be known (since computed previously) and $\psi:=\partial_{\rm x}\phi.$

Construction of the approx. Riemann solver Full numerical scheme W-B property

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

$$\underbrace{\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \tilde{\phi}\left(\frac{x}{\Delta t}, \phi_L, \phi_R\right) \mathrm{d}x}_{\tilde{A}} = \underbrace{\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \phi_{\mathcal{R}}\left(\frac{x}{\Delta t}, \phi_L, \phi_R\right) \mathrm{d}x}_{A_{\mathcal{R}}},$$

with $\phi_{\mathcal{R}}$ the exact Riemann solver and $\tilde{\phi}$ the approximated one.

• Left side:

$$\tilde{A} = \frac{1}{2} \left(\phi_L + \phi_R \right) + \frac{\Delta t}{\Delta x} \left(\lambda_L \left(\phi_L - \phi_L^{\star} \right) + \lambda_R \left(\phi_R^{\star} - \phi_R \right) \right).$$

Construction of the approx. Riemann solver Full numerical scheme W-B property

$$\partial_t \phi - D \partial_x \psi = a \rho - b \phi$$
 (3)

Right side (by integrating on [0, Δt] × [-Δx/2, Δx/2] the exact equation (3)):

$$A_{\mathcal{R}} = \frac{1}{2} \left(\phi_L + \phi_R \right) + \frac{D\Delta t}{\Delta x} \left(\psi_R - \psi_L \right) + \frac{1}{\Delta x} \int_0^{\Delta t} \int_{-\Delta x/2}^{\Delta x/2} a \rho_{\mathcal{R}} - b \phi_{\mathcal{R}} \mathrm{d}x \mathrm{d}t.$$

First part of the model:

$$\frac{1}{\Delta x}\int_{-\Delta x/2}^{\Delta x/2}\rho_{\mathcal{R}}(x,t)\,\mathrm{d}x=\frac{1}{2}\left(\rho_{L}+\rho_{R}\right)-\frac{t}{\Delta x}\left(\rho_{R}u_{R}-\rho_{L}u_{L}\right).$$

• We get:

$$\mathcal{F}(\Delta t) := A_{\mathcal{R}} = \frac{1}{2} \left(\phi_L + \phi_R \right) + \frac{D \Delta t}{\Delta x} \left(\psi_R - \psi_L \right) \\ + a \left(\frac{\Delta t}{2} \left(\rho_L + \rho_R \right) - \frac{\Delta t^2}{2\Delta x} \left(\rho_R u_R - \rho_L u_L \right) \right) - b \int_0^{\Delta t} \mathcal{F}(t) \, \mathrm{d}t.$$

C. Berthon, A. Crestetto, F. Foucher W-B scheme for a model of chemotaxis

Construction of the approx. Riemann solver Full numerical scheme W-B property

$$\rightarrow \text{ Equation on } \mathcal{F}(\Delta t):$$
$$\mathcal{F}'(\Delta t) + b\mathcal{F}(\Delta t) = \frac{D}{\Delta x}(\psi_R - \psi_L) + a\left(\frac{1}{2}(\rho_L + \rho_R) - \frac{\Delta t}{\Delta x}(\rho_R u_R - \rho_L u_L)\right).$$

• Solution:

w

$$\mathcal{F}(\Delta t) = \frac{1}{2} (\phi_L + \phi_R) e^{-b\Delta t} + \alpha \Delta t + \beta \left(1 - e^{-b\Delta t}\right)$$

ith $\alpha = -\frac{a}{b\Delta x} (\rho_R u_R - \rho_L u_L)$ and

$$\beta = \frac{D}{b\Delta x} \left(\psi_R - \psi_L \right) + \frac{a}{2b} \left(\rho_L + \rho_R \right) + \frac{a}{b^2 \Delta x} \left(\rho_R u_R - \rho_L u_L \right).$$

- Consistency condition: Ã = A_R = F (Δt).
 + Choice: φ_L φ^{*}_L = φ_R φ^{*}_R.
 → Expressions for φ^{*}_L and φ^{*}_R.
 - And what about ψ_L and ψ_R ? Answer later...

Construction of the approx. Riemann solver Full numerical scheme W-B property

Finite Volumes scheme

- 1D domain [0, L] discretized by N + 1 points: $x_i = i\Delta x$, $i = 0, \dots, N$, $\Delta x = \frac{L}{N}$.
- Evolution in time of $w_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} w(x, t^n) dx$ and $\phi_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \phi(x, t^n) dx$, where

 $t^n = n\Delta t$ for a time step Δt .

Scheme coming from the previously defined Riemann solvers:

Construction of the approx. Riemann solver Full numerical scheme W-B property

Definition of ψ_i^n

• ψ_i^n such that good approximation of $(\partial_x \phi)_i^n$, for example of the form

$$\psi_i^n = \frac{1}{2\Delta x} \left(\phi_{i+1}^n - \phi_{i-1}^n \right) \times \mathcal{I}(\Delta x)$$

where $1(\Delta x)$ has to be consistent with 1 when Δx tends to 0.

1(Δx): correction term such that φ_iⁿ⁺¹ = φ_iⁿ at equilibrium in the particular case γ = 2.

Construction of the approx. Riemann solver Full numerical scheme W-B property

Equilibrium for $\gamma = 2$

• Equilibrium given by:

$$\begin{cases} u = 0, \\ \phi = \frac{2\varepsilon}{\chi}\rho + K, \\ D\partial_{xx}\phi - b\phi = -a\rho, \end{cases} \Rightarrow \begin{cases} u = 0, \\ \partial_{xx}\rho - \frac{\chi}{2\varepsilon D} \left(\frac{2\varepsilon b}{\chi} - a\right)\rho = Kb\frac{\chi}{2\varepsilon D}. \end{cases}$$

Solutions^{1,2}:

 $\begin{array}{ll} \text{if } \rho = 0: & \phi\left(x\right) = A\cosh\left(x\sqrt{b}\right) + B\sinh\left(x\sqrt{b}\right), \\ \text{if } \rho > 0, \ C < 0: & \phi\left(x\right) = A\cos\left(x\sqrt{|C|}\right) + B\sin\left(x\sqrt{|C|}\right) - \phi_p, \quad \rho\left(x\right) = \frac{x}{2\varepsilon}\left(\phi\left(x\right) - K\right), \\ \text{if } \rho > 0, \ C > 0: & \phi\left(x\right) = A\cosh\left(x\sqrt{C}\right) + B\sinh\left(x\sqrt{C}\right) - \phi_p, \quad \rho\left(x\right) = \frac{x}{2\varepsilon}\left(\phi\left(x\right) - K\right), \\ \end{array}$

where A and B are some constants, $C = \frac{1}{D} \left(b - \frac{a\chi}{2\varepsilon} \right)$ and $\phi_p = \frac{Ka\chi}{2\varepsilon b - a\chi}$.

¹Natalini, Ribot, Twarogowska, CMS 2014.

²Twarogowska, PhD Thesis 2011.

C. Berthon, A. Crestetto, F. Foucher W-B scheme for a model of chemotaxis

 Injecting these solutions in the Finite Volumes scheme and imposing φ_iⁿ⁺¹ = φ_iⁿ gives the appropriate expression of 1(Δx):

$$\begin{array}{ll} \text{if } \rho = 0: & 1(\Delta x) = \frac{\Delta x^2}{2} \frac{b}{\cos(\sqrt{b}\Delta x) - 1}, \\ \text{if } \rho > 0, \ C < 0: & 1(\Delta x) = \frac{\Delta x^2}{2} \frac{C}{\cos(\sqrt{|C|}\Delta x) - 1}, \\ \text{if } \rho > 0, \ C > 0: & 1(\Delta x) = \frac{\Delta x^2}{2} \frac{C}{\cosh(\sqrt{C}\Delta x) - 1}. \end{array}$$

Expression of ψⁿ_i

$$\psi_i^n = \frac{1}{2\Delta x} \left(\phi_{i+1}^n - \phi_{i-1}^n \right) \times \mathcal{I}(\Delta x)$$

with this $1(\Delta x) \Rightarrow$ steady states exactly preserved for $\gamma = 2$ and approximated for $\gamma > 2$.

• Min-Max procedure in order to ensure $\phi \geq 0$.

Testcase 1 Testcase 2

Testcase 1: perturbation of an equilibrium solution

Exact equilibrium solution^{1,2}: •

$$\phi(x) = \begin{cases} \frac{2\varepsilon bK}{\tau\chi D} \frac{\cos(\sqrt{\tau}x)}{\cos(\sqrt{\tau}\overline{x})} - \frac{aK}{\tau D}, & \text{for } x \in [0, \overline{x}], \\ -\frac{2\varepsilon K}{\chi} \frac{\cosh\left(\sqrt{\frac{b}{D}}(x-L)\right)}{\cosh\left(\sqrt{\frac{b}{D}}(\overline{x}-L)\right)}, & \text{for } x \in]\overline{x}, L], \end{cases}$$
$$\rho(x) = \begin{cases} \frac{\chi}{2\varepsilon} \phi(x) + \frac{D}{b} \frac{M\tau^{3/2}}{\tan(\sqrt{\tau}\overline{x}) - \sqrt{\tau}\overline{x}}, & \text{for } x \in [0, \overline{x}], \\ 0, & \text{for } x \in]\overline{x}, L], \end{cases}$$
$$u(x) = 0,$$

where
$$\tau = \frac{1}{D} \left(\frac{a\chi}{2\varepsilon} - b \right)$$
 and \overline{x} s.t. $\sqrt{\frac{b}{\tau D}} \tan\left(\sqrt{\tau \overline{x}}\right) = \tanh\left(\sqrt{\frac{b}{D}} \left(\overline{x} - L\right)\right)$.

¹Natalini, Ribot, Twarogowska, CMS 2014.

²Twarogowska, PhD Thesis 2011.

C. Berthon, A. Crestetto, F. Foucher

`

Testcase 1 Testcase 2

Testcase 2: influence of parameters on the steady state

• Initial conditions:
$$\rho(x,0) = 1 + \sin\left(4\pi |x - \frac{L}{4}|\right)$$
,
 $u(x,0) = 0$,
 $\phi(x,0) = 0$.

Study

- Density ρ as a function of x at steady state.
- Influence of L and χ with $a = b = D = \varepsilon = 1$.
- Influence of γ with $a = 20, b = 10, D = 0.1, \varepsilon = 1$.
- Validation? No analytical solution. But results similar to those of Twarogowska^{1,2}.

²Twarogowska, PhD Thesis 2011.

¹Natalini, Ribot, Twarogowska, CMS 2014.

27/31

- HLL consistent Riemann solver.
- Positivity of ρ and ϕ .
- Equilibrium states exactly preserved when $\gamma = 2$ and well approached when $\gamma > 2$.
- No problem with vacuum $\rho = 0$.
- We can prove that the scheme is AP in the case $\alpha > 0$.

... and perspectives

- Understand the behaviour of the asymptotic-parabolic model.
- Extension of the model to the 2D.

- **C. Berthon, C. Chalons**, A Fully Well-Balanced, Positive and Entropy-satisfying Godunov-type method for the shallow-water equations, *submitted*, *HAL: hal-00956799*.
- R. Natalini, M. Ribot and M. Twarogowska, A Well-Balanced Numerical Scheme for a One Dimensional Quasilinear Hyperbolic Model of Chemotaxis, *Commun. Math. Sci.* 12 (1), pp. 13-38, 2014.
- **M. Twarogowska**, Numerical Approximation and Analysis of Mathematical Models Arising in Cells Movement, *PhD Thesis, Università degli studi dell'Aquila, 2011.*

Thank you for your attention!