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Hyperbolic model of chemotaxis

Otp+ Oy (pu) = 0, (1)
Oe (pu) + O« (pu” +p) = xpdo — apu, (2)
0:¢ — DOx¢ = ap— b, (3)

where

p(x,t) > 0: particles density,
u(x,t) € R: mean velocity,
¢ (x,t) > 0: concentration of chemoattractant,

p(p) = ep?: pressure law, with v > 1 adiabatic exponent and
e > 0 a constant,

Xx>0,a>0, D>0 a>0and b> 0 some parameters.
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Objectives

Preserve equilibrium states (at rest, with u = 0), that are

given by
iﬁp'y—l - ¢ = Kv (4)
—Dowd = ap— bo,

with a constant K.

W-B scheme on the hyperbolic part (1)-(2)%2, and also on the
equation (3) for ¢.

!Natalini, Ribot, Twarogowska, CMS 2014.
2Twarogowska, PhD Thesis 2011.
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Hyperbolic model

We first look at the two first equation (1)-(2), that we rewrite as

Orw + OxF (w) = S (w) (5)
with

v ( ppu ) Flw)= < pué)ip ) and 3(w) = < XP3X¢O_ap” )

considering ¢ as a known source term.

First study: without friction (o = 0).
Second study: with friction (o > 0).
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Approximate Riemann solver

Approximate Riemann solver w(%, w;, wg) defined by:

velocities A\; < 0 < Ag:

Ar=min(07,A,Az) and Ag =max(0T, /[, A}),
where )\jf and )\ﬁ denote the eigenvalues of the flux Jacobian
matrix:

M =utc where c=c(p)=Pl(p) = Veyp1,
intermediate states w; and wg (will be defined later),
the CFL condition: 2f max (|A.|, |Ag]) < 3

Ax
0
Tt el iy Bl bl
Wi WR
0 } } >
-Ax/2 0 Ax/2
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Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

1 /_ el = 2 [ (e,
Ax A R Ax | B P WL WR)GX
A AR

with wg (%, wi, wg) the exact solution of the Riemann problem.
Left side:

A= 1(WL+WR)+%(/\L(WL—WL)+/\R( R — WR))

0 : ' >
-Ax/2 0 Ax/2
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Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

Orw + OxF (w) = S (w) (5)

Right side (by integrating on [0, At] X [—%, %} the exact

equation (5)) in the case o = 0:

Ar = 5 (e wg) — o (F (w) — F (wa) + At (;’R> .

N —

Ax
Exact source term Si = ﬁ OAt e XPOxpdxdt
2

Pt d wr = pT?
ptuz>an YR\ prug )

approximated by S*.

Four other unknowns: w}" = (
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Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

Two first equation: A= A &

AL(pL— pf) + Ar (PR — PR) = pLUL — PRUR,
A (pLue — piu}) + Ar (pRuf — pRUR) = pLUf + pL — pRUE — PR + AXS*.

Third equation: pju; = pgpup =: q*.

Two last equations: study the steady states at rest.
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Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
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Steady states at rest

u=20,
e_X¢:K7

where e (p) is defined by dve = %8XP which is, since P(p) = ep™:

Steady states at rest associated to (5) given by: {

_ "
e(p)—67_1

P+ e
with eg an arbitrary constant.

up =urg =0,

In the Riemann problem:
P {eL—X¢L=eR—X¢R=K-

Approximated Riemann solver preserves steady states at rest:

{ ui=ut=0 (=g =0),
e — XL =ep — x¢r = K.
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Source-term approximation®

We are at steady state = A = A becomes

AL(pL — p7) + Ar(pR — PR) = 0,
(AR — AL)q" + pr — pL = Ax 5.

We want to preserve steady states = we have to ensure g* = 0
= we suggest to put the following consistent expression of S*:

«_ X PR—PL B
S Ax erR — €L (¢R ¢L)

Fourth equation.
Necessary condition for Well-Balanced property.

3Berthon, Chalons, submitted.
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Correction for the positivity

For the last equation, we choose to impose

Pl PF
ettt — xoL = er™ B — xR,
oL PR

which is consistent with eg — ¢ = ¢r — ¢, and gives a

linearization of the equation Oye = Y 0xo.
Sufficient condition for Well-Balanced property.

Solving the system of five equations = expressions for pj, pk,
g* and S*.
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Case with friction: o > 0

Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

What changes? The second equation:

O (pu) + Ox (pu” + p) = xpdxd — apu.

Integrating on [0, At] x [—& ﬁ] gives
1 At ) ) t
F(At) = 5 (prLuc +pRUR)_B (pRuR—I—,DR—pLuL—pL)—I—AtSR—a 0.7'—(1‘) dt,
where
L g (e
F(t) = —/ pu)s (x, t) dx.
(t) = %+ e PR
Equation in F (At):
1 At
/ _ 2 _
F(At)—z(...) Ax( )+ AtSg — oF (At).
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Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

Solution:

1 1
—al 2 2
F (At) = Ke t—i—a|:_,_,X(pRUR+PR_PLUL—,DL)+SR:|,

with

1 17 1 , ,
K= 5 (pruL+ prug) — — [—E (pRUR + PR — pLUT — pL) + S’R] :
HLL consistency condition: Ay = F (At).

Approximation of Sg in order to preserve equilibrium (v = 0):
S* defined previously suits.

p] and pk not changed.

g* is the only quantity that has to be modified when taking
a > 0.
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Correction for the positivity

Construction of the approx. Riemann solver without friction
Construction of the approx. Riemann solver with friction
Correction for the positivity

Min-Max procedure in order to ensure pj > 0 and pk > 0, where

oF = o+ ARR s PLUL — PRUR
LT PETSRAL —0idr  TORAL — OLAR
MR pLuL — prRUR
*
= SEA A Y R Sl
PR PR N — O CORAL — LR
with 0g = 5L = and R = X(qu — qu) — €R.
For simplicity reasons: A\g = —Aj.
Consistency gives now:
~ PRUR — pLUL
Al=AR1 & pL+pPR=pL+ PR~ RS PO 2pHLL-

We take: _
pr = min (max (0, pg) , 2pHLL) ,
p; = min (max (0, p}) , 2pHLL) -
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We now look at the equation (3) on ¢, that we rewrite as:

0¢¢ — DOxp = ap — b,

where p is assumed to be known (since computed previously) and

= Ox.
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Full model
Numerical results WHE! frereay

HLL consistency condition

Consistency condition from Harten, Lax and van Leer:

Ax/2

o [ (o 0m) ax = ae | o7 (apouoe)

—Ax/2

A AR

with ¢ the exact Riemann solver and ¢ the approximated one.

Left side:

(60 6R) + RE (M (61— 61) + Ar (65 — 68).

Ax
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Construction of the approx. Riemann solver
Full numerical scheme
W-B property

06— DO = ap—bp  (3)

Right side (by integrating on [0, At] X [ Azx, Azx} the exact
equation (3)):
1 DAt At rAx/2
AR = 5 (oL + OR) + —— (VR — Y1) + +— / / apr — bordxdt.
2 Ax Ax/2

First part of the model:

1 AX/Z q 1 t
Ax /_AX/2 pr (x, t)dx 5 (pL+ PR) Ax (pPrRUR — prur)

We get:

F(AY) = Ar = 3 (90 + 0r) + et (i — )
At At

At
+a < > (pL+ prR) — SAx (prUr — pLuL)> —b A F(t)dt.
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Construction of the approx. Riemann solver
Full numerical scheme
W-B property

Equation on F (At):

D
F'(At)+bF (At) = Ax (Yr —1)+a <% (pL+ pr) — % (prUR — pLuL)> .

Solution:
F(At) = % (o1 + dr) e P2t - aAt + 3 (1 - e_bAt)
with o = — 42— (prur — prur) and
= pax (VR — V1)t 55 (oL + PR)+ 525% (PRUR — pruL).

Consistency condition: A = Ag = F (At).
Choice: ¢ — ¢] = ¢r — Pk.
Expressions for ¢ and ¢f.

And what about ¢; and ¥g? Answer later...
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Finite Volumes scheme

1D domain [0, L] discretized by N + 1 points: x; = iAx,
i=0,....N, Ax = £.
Evolution in time of w” ~ £ [*7*1/2 w (x, t") dx and

Xj—1/2
1 i
PN~ A ;(:1//22 & (x, t") dx, where

t" = nAt for a time step At.

Scheme coming from the previously defined Riemann solvers:

n+l _ . n At n * n *
Wi = Wi T Ax ()‘i—%,R (Wi —W,_1 R) - )‘i+%,L (Wi - W,-+;7L)) )

n+1 _ n At n * n *
qbi — % T Ax <)‘i—l R (qb/ - ¢i—%,R) - )‘i+%,L (¢I - ,'_|_37:>) :

WL,i+1 IZ* WR,i+112*

Wiz WRiisti2.
tn ? ? -
Xi- Xi+112 Xj+1
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Definition of 7

¥ such that good approximation of (9x¢)?, for example of

the form )
Y = Ax (o771 — df-1) x 1(Ax)

where I(Ax) has to be consistent with 1 when Ax tends to 0.

. . P oL e .
1(Ax): correction term such that ¢! = ¢7 at equilibrium in
the particular case v = 2.
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Equilibrium for v =2

Equilibrium given by:

u=0, u=0
¢o=2p+K = "y (2 .
X ’ _ X _[<£b _ — X
Disots — by = —ap, p = 225 (50 = 3) = Ko,
Solutions!+2:
it p=0: ¢ (x) = Acosh (X\/E) + Bsinh (X\/E) ,
if p>0, C<O0: qb(x):Acos(x\/E)—i—Bsin(x\/E)—gzﬁp, p(x)=35£(o(x) — K),
2 (0 (x) = K),

if p>0, C>0: ¢(x)=Acosh (X\/E) + Bsinh (X\/E) —¢p, p(x)=3%

where A and B are some constants, C = % (b — ;—’E‘) and ¢, = Sehoay-

!Natalini, Ribot, Twarogowska, CMS 2014.
2Twarogowska, PhD Thesis 2011.
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Injecting these solutions in the Finite Volumes scheme and
imposing qb,’.'+1 = ¢ gives the appropriate expression of I(Ax):

. ] _ Ax? b
lfp:O . J(AX) - Tm’

. . _A2_ C
020 €20 280 = 8 C e
if p>0, C>0: I(Ax) =252 £

2 cosh(\/?Ax)—l ’

Expression of 97

1
Y = Ax (¢f1 — 1) x 1(Ax)

with this 1(Ax) = steady states exactly preserved for v = 2
and approximated for v > 2.

Min-Max procedure in order to ensure ¢ > 0.
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Testcase 1: perturbation of an equilibrium solution

Testcase 1
Testcase 2

Exact equilibrium solution®2:

2:bK <O5(V7X) K for x € [0,%],

7xD cos(ﬁ?) D>

b (x) = 2k cosh(@(x—L))

— —— <, forx €]x, L],

X cosh (\/%(?—L))

X + Q%’ f c 07_ ,
o = | EOH S e
0, for x € |x, L],

u(x) =0,
where 7 = } (2 — b) and X s.t. /-5 tan (,/7%) = tanh ( b(x- L)>
!Natalini, Ribot, Twarogowska, CMS 2014.

2Twarogowska, PhD Thesis 2011.
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Testcase 1
Testcase 2

pand pwitha=b=D=ec=1,v=2, x=50,L=1, Ax=0.01.

Steady state -

Steady state -

s o8 s o8
06 06
04 04
02 02
0 0
o 02 04 06 08 1 o 02 04 06 08 1
x x
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Testcase 2: influence of parameters on the steady state

Testcase 1
Testcase 2

Initial conditions: p(x,0) = 1 + sin (47|x — £1),
u(x,0) =0,
¢ (x,0)=0.

P

Study

Density p as a function of x at steady state.

Influence of L and y witha=b=D=¢=1.

Influence of v with a =20, b=10, D =0.1, e = 1.
Validation? No analytical solution. But results similar to those
of Twarogowska? 2.

!Natalini, Ribot, Twarogowska, CMS 2014.
2Twarogowska, PhD Thesis 2011.
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Testcase 1
Testcase 2

Influence of L at v =2, x =3, Ax = 0.01.

L= x= =5, =
14
05
12
0s
|
04
0s
a a
03
06
04 02
0 o1
o o
o 02 o3 05 o5 1 o 1 B 3 f s
x x
01 0
05
025
0s
02
04
a a s
03
o
0
005
o
o o
o l B 3 f s s 7 o s m s B 2 0
x x
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Influence of y at v =2, L =7, Ax = 0.01.

Testcase 1
Testcase 2

L=7. ="

L=7,X=50 -

2

3

x

Y

s

5

7

2

3

x

n

s

5
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Testcase 1
Testcase 2

Influence of v at x = 10, L = 3, Ax = 0.01.

05 [ Ls 2 25 3
x
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Testcase 1
Testcase 2

Conclusions...

HLL consistent Riemann solver.

Positivity of p and ¢.

Equilibrium states exactly preserved when v = 2 and well
approached when ~ > 2.

No problem with vacuum p = 0.

We can prove that the scheme is AP in the case a > 0.

Understand the behaviour of the asymptotic-parabolic model.
Extension of the model to the 2D.
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