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Problem

The role of mangroves (coastal forests) in the
mitigation of tsunami impacts is a debated
topic and numerical simulation can bring
an important contribution to this debate.
Several articles have been devoted to the
numerical modelling of tsunami mitigation by
mangroves in the past few years [1, 2, 3].
The arrival of a tsunami in a coastal area is
generally described by the shallow water model.

Shallow water equations
A way of modelling the mangrove resistance
is to add a bottom friction term (similar to
those used in the simulation of overland flows
(Delestre)[4] ) to the shallow water equations:

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x
(
hu2 + 1/2gh2

)
+ gh(∂xz + Sf ) = 0,

where h is the water height, u is the velocity,
g is the gravitational constant, z is the topog-
raphy of the bottom, and Sf is a friction term
due to the mangrove. A usual friction term is,
for instance, the so-called Manning friction or
Darcy-Weisbach:

Sf = Cf
u|u|
h4/3

, or Sf = Cf
u|u|
8gh

,

where Cf is a given coefficient.
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Numerical method

Generally, all the unknowns of the system are approximated on the same mesh and the numerical
fluxes are computed with an approximate Riemann solver. We refer to Bouchut [5] and
Toro [6] for a thorough description and analysis of this approach. Staggered finite volume
discretizations for solving nonlinear hyperbolic system of conservation laws have been investigated
more recently Herbin et all [7] and Doyen et all [8]. The numerical fluxes can then be computed
simply componentwise, using upwind or centered approximations.
We consider the time interval (0, T ) and the space domain Ω := (0, L) with solid wall boundary
conditions (i.e. u = 0 at each end of the domain Ω). The time interval is divided into Nt time steps
of length ∆t and, for all n ∈ {0, . . . , Nt}, tn := n∆t. The domain Ω is divided into Nx cells of length
∆x. The left end, the center and the right end of the i-th cell are denoted by xi− 1

2
, xi and xi+ 1

2
,

respectively. We set M := {1, . . . , Nx}, Eint := {1, . . . , Nx − 1}, Eb := {0, Nx}, and E := Eint ∪ Eb.
The mass conservation equation is discretized with an explicit upwind scheme:
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:= ĥni+ 1
2
uni+ 1

2
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The momentum balance equation is discretized with explicit upwind fluxes for the convection term
and implicit centered fluxes for the pressure term and topography term:
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At each time step, the Courant number is defined by
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The numerical simulations show that the staggered scheme is stable under the CFL condition ν ≤ 1.

Numerical simulations


