Numerical modelling of tsunami mitigation by mangroves

Putu Harry Gunawan^{1,2,*}, D. Doyen¹, R. Eymard¹, S.R. Pudjaprasetya² LAMA (Laboratoire d'Analyse et de Mathématiques Appliquées) UPEM¹ & ITB² *putu-harry.gunawan@univ.paris-est.fr

Problem

Numerical method

Generally, all the unknowns of the system are approximated on the same mesh and the numerical fluxes are computed with an approximate Riemann solver. We refer to Bouchut [5] and Toro [6] for a thorough description and analysis of this approach. Staggered finite volume discretizations for solving nonlinear hyperbolic system of conservation laws have been investigated more recently Herbin et all [7] and Doyen et all [8]. The numerical fluxes can then be computed simply componentwise, using upwind or centered approximations.

 h_{i-1}

 $u_{i-1/2}$

Shallow water equations

A way of modelling the mangrove resistance is to add a bottom friction term (similar to those used in the simulation of overland flows

We consider the time interval (0,T) and the space domain $\Omega := (0,L)$ with solid wall boundary conditions (i.e. u = 0 at each end of the domain Ω). The time interval is divided into N_t time steps of length Δt and, for all $n \in \{0, \ldots, N_t\}, t^n := n\Delta t$. The domain Ω is divided into N_x cells of length Δx . The left end, the center and the right end of the *i*-th cell are denoted by $x_{i-\frac{1}{2}}$, x_i and $x_{i+\frac{1}{2}}$, respectively. We set $\mathcal{M} := \{1, ..., N_x\}, \ \mathcal{E}_{int} := \{1, ..., N_x - 1\}, \ \mathcal{E}_b := \{0, N_x\}, \ \text{and} \ \mathcal{E} := \mathcal{E}_{int} \cup \mathcal{E}_b.$ The mass conservation equation is discretized with an explicit upwind scheme:

$$h_i^{n+1} - h_i^n + \frac{\Delta t}{\Delta x} \left(q_{i+\frac{1}{2}}^n - q_{i-\frac{1}{2}}^n \right) = 0, \qquad \forall i \in \mathcal{M},$$

where

$$q_{i+\frac{1}{2}}^{n} := \hat{h}_{i+\frac{1}{2}}^{n} u_{i+\frac{1}{2}}^{n}, \qquad \hat{h}_{i+\frac{1}{2}}^{n} := \begin{cases} h_{i}^{n} & \text{if } u_{i+\frac{1}{2}}^{n} \ge 0\\ h_{i+1}^{n} & \text{if } u_{i+\frac{1}{2}}^{n} < 0 \end{cases}, \qquad \forall i \in \mathcal{E}$$

The momentum balance equation is discretized with explicit upwind fluxes for the convection term and implicit centered fluxes for the pressure term and topography term:

$$\begin{aligned} u_{i+\frac{1}{2}}^{n+1}u_{i+\frac{1}{2}}^{n+1} - h_{i+\frac{1}{2}}^{n}u_{i+\frac{1}{2}}^{n} + \frac{\Delta t}{\Delta x} \Big[q_{i+1}^{n}\hat{u}_{i+1}^{n} - q_{i}^{n}\hat{u}_{i}^{n} + \frac{1}{2}g \left[(h_{i+1}^{n+1})^{2} - (h_{i}^{n+1})^{2} \right] \\ &+ gh_{i+\frac{1}{2}}^{n+1}(z_{i+1} - z_{i}) \Big] + \frac{\Delta tgC_{f}}{\left(h_{i+\frac{1}{2}}^{n+1}\right)^{1/3}} |u_{i+\frac{1}{2}}^{n}| u_{i+\frac{1}{2}}^{n+1} = 0, \qquad \forall i \in \mathcal{E}_{int}, \end{aligned}$$

(Delestre)[4]) to the shallow water equations:

 $\partial_t h + \partial_x (hu) = 0,$ $\partial_t(hu) + \partial_x \left(hu^2 + 1/2gh^2\right) + gh(\partial_x z + S_f) = 0,$

where h is the water height, u is the velocity, g is the gravitational constant, z is the topography of the bottom, and S_f is a friction term due to the mangrove. A usual friction term is, for instance, the so-called Manning friction or Darcy-Weisbach:

$$S_f = C_f \frac{u|u|}{h^{4/3}}, \text{ or } S_f = C_f \frac{u|u|}{8gh},$$

where C_f is a given coefficient.

References

[1] H. YANAGISAWA ET ALL, The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis, Estuarine, Coastal and Shelf Science 81 (27-37), 2009.

[2] H.L. KOH, ET AL, Simulation of Andaman 2004

$$h_{i+\frac{1}{2}}^n := \frac{1}{2} \left(h_i^n + h_{i+1}^n \right), \qquad \forall i \in \mathcal{E}_{int},$$

$$q_i^n := \frac{1}{2} \left(q_{i-\frac{1}{2}}^n + q_{i+\frac{1}{2}}^n \right), \qquad \hat{u}_i^n := \begin{cases} u_{i-\frac{1}{2}}^n & \text{if } q_i^n \ge 0\\ u_{i+\frac{1}{2}}^n & \text{if } q_i^n < 0 \end{cases}, \qquad \forall i \in \mathcal{M}.$$

At each time step, the Courant number is defined by

$$\nu := \frac{\Delta t}{\Delta x} \max_{i \in \mathcal{M}} \left(\frac{\left| q_{i+\frac{1}{2}}^n + q_{i-\frac{1}{2}}^n \right|}{2h_i^n} + \sqrt{gh_i^n} \right).$$

The numerical simulations show that the staggered scheme is stable under the CFL condition $\nu \leq 1$.

Numerical simulations

- tsunami for assessing impact on Malaysia, Journal of Asian Earth Sciences 36 (74-83), 2009.
- [3] S.Y. TEH ET AL, Analytical and numerical simulation of tsunami mitigation by mangroves in Penang, Malaysia, Journal of Asean Earth Sciences, pp. 38-46, 2009.
- O. DELESTRE, Simulation du ruissellement d'eau de 4 pluie sur des suface agricoles, PhD thesis, Université D'orléans. 2010.
- [5] F. BOUCHUT, Nonlinear Stability of Finite Volume Method for Hyperbolic Conservation Laws and Well-Balanced Schemes four Sources, Birkhauser Verlag, Germany. 2004.
- [6] E. F. TORO, Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction 3rd edition, Springer-Verlag: Berlin Heidelberg, 2009.
- [7] R. HERBIN, ET AL, Consistent explicit staggered schemes for compressible flows - Part I: the barotropic Euler equations, submitted, 2013.
- [8] D. DOYEN, AND P.H. GUNAWAN, Explicit staggered scheme for the shallow water equations with topography, submitted, 2014.