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SWMHD system
The incompressible MHD system describes the
evolution of a charged gas interacting with a
magnetic field. In the shallow regime, the
SWMHD (Shallow Water MHD) system is rele-
vant.

If the state is described with dependency on only
one spatial dimension x and time t, the equa-
tions are

∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + P ) = −gh∂xz,

∂t(hv) + ∂x(huv + P⊥) = 0,

∂t(ha) + u∂x(ha) = 0,

∂t(hb) + ∂x(hbu− hva) + v∂x(ha) = 0,

with
h: height of the fluid,
(u,v)T : velocity vector
(a,b)T : magnetic field vector

P = g
h2

2
− ha2, P⊥ = −hab.

The eigenvalues of the sytem are

u−
√
a2 + gh < u−|a| < u < u+|a| < u+

√
a2 + gh.

Moreover

• u, u− |a|, u+ |a| are linearly degenerate;

• u±
√
a2 + gh are genuinely non linear.

Example of application: the solar tachocline
The solar tachocline is a thin layer between radiative
and convective zones of the solar interior.
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System with flat bottom
We introduce a Suliciu type relaxation approxi-
mation for the system with flat bottom. We obtain
the following relaxed system:

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + π ) = 0,

∂t(hv) + ∂x(huv + π⊥ ) = 0,

∂t(ha) + u∂x(ha) = 0,

∂t(hb) + ∂x(hbu− hav) + v∂x(ha) = 0,

∂t(h π ) + ∂x(hπu) + c2 ∂xu = 0,

∂t(h π⊥ ) + ∂x(hπ⊥u) + c2a ∂xv = 0,

∂t c + u∂xc = 0,

∂t ca + u∂x(ca) = 0.

where π , π⊥ are new variables, the relaxed
pressures, and ca , c intended to parametrize the
speeds. The eigenvalues of the relaxed sytem are

u− c

h
< u− ca

h
< u < u+

ca
h
< u+

c

h
,

and they are all linearly degenerate.

Properties of the solver
Using this approach, we are able to prove that:

• under some subcharacteristic conditon and
a particular choice of ca,l, ca,r, cl, cr the
solver satisfies a discrete entropy in-
equality, and preserves positivity of
height;

• it resolves exactly all contact disconti-
nuities;

• data with bounded propagation speeds
give finite numerical propagation
speed;

• the numerical viscosity is sharp,in the
sense that the propagation speeds of the
approximate Riemann solver tend to the
exact propagation speeds when the left
and right states tend to a common value.

Topography treatment
The SWMHD system with non-flat bottom has four
linearly degenerate eigenvalues

u, u− |a|, u+ |a|, 0,

respectively called material, left Alfven, right Aflven
and topography waves, that can be resonant. We
want our scheme to preserve some families of contact
discontinuities associated to the 0-wave. Thus we
deal with different cases:

• material contact and Alfven contact resonance
case. (u = a = 0) satisfying

h+ z = cst, u = 0, a = 0, (1)

• material contact resonance case (u = 0 and
a 6= 0) satisfying

u = 0, v = cst, h+ z = cst,
√
h a = cst,

√
h b = cst. (2)

We use the hydrostatic reconstruction method
and define reconstructed heights

h#
l = (hl − (∆z)+)+, h#

r = (hr − (−∆z)+)+.

We also define reconstructed magnetic states

a#l = κlal, b#l = κlbl,

with κl = min

(√
hl

h#
l

,γ

)
, γ ≥ 1.

The numerical fluxes involve the reconstructed

states and suitable correction terms.

Main results
We obtain a scheme that satisfies the following
properties:

• it is consistent,

• it satisfies a semi-discrete entropy in-
equality,

• it preserves the nonnegativity of the
thickness of the fluid layer,

• it is well-balanced, i.e. it resolves exactly
contact discontinuities of type (1) and (2).

Test case
The space variable x is taken in [0,1]. The test con-
sists of two steady states:

• On [0,1/2), we take initial data corresponding
to steady state of type (2).

• On (1/2,1], we take initial data corresponding
to steady state of type (1).

x

Steady state
of type (2)

u = 0, v = 2,
h + z = 2,√
h a = 1,√
h b = 2,

z discontinuous.

Steady state
of type (1)

h + z = 0.5,
u = 0, a = 0,

z continuous.

b,v continuous,

y

0

Initial data configuration

Numerical results

∆x = 5.10−3, t = 0.02, ref with ∆x = 3.10−4.
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∆x = 3.10−4, t = 0.08., ref with ∆x = 3.10−4.

0,2 0,4 0,6 0,8 1

0,5

1

1,5

2

z

h+z
u
a

b

0,3 0,4 0,5 0,6 0,7

0,5

1

1,5

z

ref

order 2

order 1

0 0,2 0,4 0,6 0,8 1
0

0,5

1

1,5

2

z

ref

order 2

order 1


