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SWMHD system

n

I'he incompressible MHD system describes the
evolution of a charged gas interacting with a
magnetic field. In the shallow regime, the
SWMHD (Shallow Water MHD) system is rele-

vant.

If the state is described with dependency on only
one spatial dimension z and time ¢, the equa-
tions are

with

h: height of the fluid,
(u,v)!: velocity vector
(a,b)1: magnetic field vector

P=g— — ha®, P, = —hab.

The eigenvalues of the sytem are

u—+/a? + gh < u—|a| < u < u+la| < u++/a2 + gh.

Moreover

e u, u— |a|, u+ |a| are linearly degenerate;

e u =+ /a2 + gh are genuinely non linear.

Example of application: the solar tachocline
The solar tachocline is a thin layer between radiative
and convective zones of the solar interior.
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Test case

The space variable x is taken in [0,1]. The test con-
sists of two steady states:

e On [0,1/2), we take initial data corresponding
to steady state of type (2).

e On (1/2,1], we take initial data corresponding
to steady state of type (1).
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Initial data configuration

System with flat bottom

We introduce a Suliciu type relaxation approxi-
mation for the system with flat bottom. We obtain
the following relaxed system:

(0

O¢(hu) + Oz (hu’ + il = 0,
Ot (hv) + 0z (huv + FEl) = 0,
) =20
) =0

Ot(ha) + w0y (ha) = 0,
0:(hb) + 0. (hbu — hav) 4+ v0,(ha) = 0,

O (Rl + 0z (hmu) + €8 Opu = 0,

O (W) + 0. (hr L)

ot e + udzc =0,
Ot/ €a + u0x(cq) = 0.

¢ O,v =0,

where [, - are new variables, the relaxed

pressures, and [ €, |, € intended to parametrize the
speeds. The eigenvalues of the relaxed sytem are

u—£<u—c—a<u<fuJ+C—G"<u+E
h h h h’

and they are all linearly degenerate.

Properties of the solver

Using this approach, we are able to prove that:

e under some subcharacteristic conditon and
a particular choice of ¢4, ¢4, ¢, ¢ the
solver satisfies a discrete entropy in-
equality, and preserves positivity of
height;:

e it resolves exactly all contact disconti-
nuities;

e data with bounded propagation speeds
ogive finite numerical propagation
speed;

e the numerical viscosity is sharp,in the
sense that the propagation speeds of the
approximate Riemann solver tend to the
exact propagation speeds when the left
and right states tend to a common value.

Numerical results

AN =150 = 10502 ref with A =138105

2

1,5

0,5

—--- order 1

1,5

N
0’5 | '...;

0,3 0,4 0,5 0,6 0,7

UNIVERSITE
PARIS-EST
MARNE-LA-VALLEE

Topography treatment

The SWMHD system with non-flat bottom has four
linearly degenerate eigenvalues

u—+ |al, O,

T ]

respectively called material, left Alfven, right Aflven
and topography waves, that can be resonant. We
want our scheme to preserve some families of contact
discontinuities associated to the O-wave. Thus we
deal with different cases:

e material contact and Alfven contact resonance

case. (u = a = 0) satisfying

h + z = cst, a =0, (1)

u = 0,

e material contact resonance case (v = 0 and
a # 0) satisfying

h + z = cst,

Vh b= cst. (2)

u = 0,

Vh a = cst,

v = cst,

We use the hydrostatic reconstruction method
and define reconstructed heights

hi = (i — (Az)1)4, R = (hr — (=A2)4) 4.

We also define reconstructed magnetic states

afﬁ = K], bf& —

h

—) | Y Z 1

g )

The numerical fluxes involve the reconstructed

Kk1by,

with kK; = min (
states and suitable correction terms.

Main results

We obtain a scheme that satisfies the following
properties:

e it is consistent,

e it satisfies a semi-discrete entropy in-
equality,

e it preserves the nonnegativity of the
thickness of the fluid layer,

e it is well-balanced, i.e. it resolves exactly
contact discontinuities of type (1) and (2).

Az = 3.107%, t = 0.08., ref with Az = 3.10~%.
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