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A given perturbation of the boundary gives the slip velocity Ūe =
1 + �ū1 + O(�2). This is exactly the same formula for classical 2D
ideal fluid, but the perturbation of pressure will be di�erent. We have
to introduce a boundary layer in order to recover the no slip condition
at the boundary.

2.3 Averaged Boundary Layer

2.3.1 Averaged Boundary Layer Equations

Writing (4, 5 and 3) with again x̄ = x̃, ū = ũ, p̄ = p̃, but now focusing
at a very small scale in the transverse direction: ȳ = (�/L)ỹ and
v̄ = (�/L)ṽ, with (�/L) << 1. Choosing (�/L) = Re⇥1/2, to keep
the transverse derivative term, this gives � = b/(

�
12⌦2

2/⌦1). This is
again the Van Dyke [18], Darrozès [3] principle, and this is the classical
boundary layer point of view (Schlichting [14], Gersten & Herwig [4]).
The boundary layer scale is the scale of the distance between the plates
(b). The Averaged Boundary Layer equations read:
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↵ũ

↵ỹ
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↵ỹ
. (15)

The relative boundary layer thickness �/L should be smaller than the
relative size of the bump � in classical boundary layer theory. In fact ỹ
is taken from the boundary itself in the normal direction. Nevertheless,
we will see in the next section that they may be of the same amplitude,
so by anticipation f̃ = f̄ . We may do a Prandtl transform (x̄ ⇤ x̄,
ỹ ⇤ ỹ ⇥ f̃(x̄), and ṽ ⇤ ṽ ⇥ df̃

dx̄
⌅ũ
⌅x̄ ), so that the transformed boundary

is flat with this new variables.
The boundary conditions are first the no slip condition at the lower

boundary ũ(x̄, 0) = 0 and ṽ(x̄, 0) = 0: the e�ort has been done to re-
obtain this. The matching condition ũ(x̄, ỹ ⇤�) = ū(x̄, ȳ ⇤ 0) gives
ũ(x̄,�) = Ūe(x̄) and there is no matching to do with the transverse
velocity at this order. We note that p̃ is function of x̄ only and matches
with the ideal fluid pressure p̄(x̄, 0), and the pressure me be removed
from the equation: Ūe

dŪe
dx̄ + Ūe = ⇥ dp̄

dx̄ (remember x̄ = x̄, and see
Appendix).

The two main results of the computation are �̃1 =
⇥�
0 (1⇥ ũ

Ūe
)dỹ the

boundary layer displacement thickness and ⌥̃ = ⌅ũ
⌅ỹ (x̄, 0) the (mean)

shear (or skin friction) at the lower wall. The boundary layer dis-
placement �1 once rescaled by Re⇥1/2 represent for the ideal fluid a
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3.2 Interacting Boundary Layer

As just said, near the point of zero friction, there is an abrupt change
in the boundary layer which has been identified by Goldstein (see Ce-
beci & Cousteix [2] or Gersten & Herwig [4]). To solve the boundary
layer separation, one has to do a ” triple deck theory” (Neiland [11],
Stewartson [16], Sychev et al. [17], Smith [15]). A more simple way to
deal with boundary layer separation is to use the idea of ”Interacting
Boundary Layer” (Smith [15], Sychev et al. [17], Cebeci & Cousteix
[2], Le Balleur [9]). The idea of this theory lies in the fact that, as one
reaches separation, ⌥̃1 becomes larger and larger. So, as the Reynolds
number is large but finite in practice, the boundary layer will pertur-
bate the perfect fluid. That is to say, displacement thickness becomes
of same size than the bump itself.

Hence , we take into account the perturbation due to the boundary
layer in adding to the lower boundary the quantity: ⌥̃1Re⇥1/2, so that
(12) becomes now:

Ūe = 1 +
1
 

fp

� �

⇥�

d
dx̄ (⌦f̄ + ⌥̃1Re⇥1/2)

x̄� �
d�. (17)

As said before this term is in fact the next order term. It is not relevant
at the considered order. Doing that, we consider that the Reynolds is
large but finite. So we brake the asymptotic sequence of the weak
coupling. We do a strong coupling: the final system is then to solve
the strongly coupled set of equations which is the set of boundary layer
equation (14, 15, 13) and the ideal fluid solution (17). They are solved
together.

The justification is in fact in the triple deck theory (Neiland [11],
Stewartson [16], Sychev et al. [17], Smith [15]). Details of the nu-
merical resolution are given in the appendix: boundary layer must be
solved in inverse way, and a coupling semi-inverse procedure is done.

As an example of resolution we show on figure 3 typical distribu-
tions of outer edge velocity, skin friction and displacement thickness.
The interaction result is that the ideal fluid flow ”feels” a new bump
which is no more ⌦f̄ but ⌦f̄ + ⌥̃1Re⇥1/2. The e✏ect is to smooth
the deflection of stream lines after the bump. This deflection may be
associated with a separation bulb: skin friction is negative there.

On figure 4 we plot the velocity field (ũ, Re⇥1/2ṽ), the displacement
thickness (corresponding to a stream line) is plotted too. On the lower
part of the figure there is an amplified view of the bump and of the
equivalent bump. The perturbation of outer edge velocity is plotted
too. It is no more symmetrical.

Finally on figure 5 and 6 we change the parameters Re and ⌦ in
order to see their influence. On figure 5, at fixed ⌦, we increase Re
from a non separated configuration to separated ones. Increasing the
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exemple in the lab Hele Shaw!
D. Doppler T. Loiseleux
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Figure 1: Left: the 3D Hele Shaw cell, of size Lc, Hc, b (b << Lc and
b << Hc). The bump is of length Lb. The relative height of the bump
is ⌃ << 1. Right up: the transverse profiles are supposed Poiseuille ones.
Right bottom: the equivalent 2D domain where the Averaged systems have
to be solved. The lower boundary is pertubed by the small bump.
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Mass: Threshold, The Shield criteria

Les lois d’entraı̂nement de M. Scipion Gras
sur les torrents des Alpes (Annales des ponts et Chaussées, 1857, 2e semestre) résumées par du Boys 1879:

“un caillou posé au fond d’un courant liquide, peut être déplacé par l’impulsion des filets qui le rencontrent : le mouvement aura lieu si la

vitesse est supérieure à une certaine limite qu’il (S. Gras) nomme vitesse d’entraı̂nement. Cette vitesse limite dépend de la densité, du

volume et de la forme du caillou; elle dépend aussi de la densité du liquide et de la profondeur du courant.”

Rennes 20/06/06 / ... ...

Shields  number
Albert F. Shields (1908–1974) no publication: phD  Technischen Hochschule Berlin, 1936 

(⇢p � ⇢)gD3

⌧D2
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“un caillou posé au fond d’un courant liquide, peut être déplacé par l’impulsion des filets qui le rencontrent : le mouvement aura lieu si la
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Rennes 20/06/06 / ... ...

Stress larger than a threshold t > ts

t
(rp�r)gD

Erosion Model

Shields  number



Vs =
d2

18�
(��)g

free fall equilibrium 

terminal velocity

characteristic flux

Qs =
d3

�
(��)g

4
3
�(��)R3g = 6��RVs



Lagrangian dilute

Turbulent Dispersed 
Multiphase Flow!

S. Balachandar1 and John K. Eaton2!

§24 Oscillatory motion in a viscous fluid 85

Supposing Uo real and taking the real part of (24.6), we have

(Jxy = - J(Wl1P)uocos(wt +tn).
The velocity ofthe oscillating surface, however, is u = Uo cos wt. There is therefore a phase
difference between the velocity and the frictional force. t
It is easy to calculate also the (time) average of the energy dissipation in the above

problem. This may be done by means of the general formula (16.3); in this particular case,
however, it is simpler to calculate the required dissipation directly as the work done by the
frictional forces. The energy dissipated per unit time per unit area ofthe oscillating plane is
equal to the mean value of the product of the force (Jxy and the velocity uy = u:

-(Jxyu = !Uo2J(!Wl1P). (24.7)

It is proportional to the square root of the frequency of the oscillations, and to the square
root of the viscosity.
An explicit solution can also be given of the problem of a fluid set in motion by a plane

surface moving in its plane according to any law u = u(t). We shall not pause to give the
corresponding calculations here, since the required solution of equation (24.3) is formally
identical with that ofan analogous problem in the theory of thermal conduction, which we
shall discuss in §52 (the solution is formula (52.15». In particular, the frictional force on
unit area of the surface is given by

t

(1 = - Jl1P f du«) "J d< .
xy n dr (t-r)'

-00

(24.8)

cf. (52.14).
Let us now consider the general case ofan oscillating body with any shape. In the case of

an oscillating plane considered above, the term (v· grad)v in the equation ofmotion ofthe
fluid was identically zero. This does not happen, of course, for a surface with arbitrary
shape. We shall assume, however, that this term is small in comparison with the other
terms, so that it may be neglected. The conditions necessary for this procedure to be valid
will be examined below.
We shall therefore begin, as before, from the linear equation (24.2). We take the curl of

both sides; the term curl grad p vanishes identically, giving

o(curlv);8t = curl v, (24.9)

i.e. curl v satisfies a heat conduction equation. We have seen above, however, that such an
equation gives an exponential decrease of the quantity which satisfies it. We can therefore
say that the vorticity decreases towards the interior ofthe fluid. In other words, the motion
of the fluid caused by the oscillations of the body is rotational in a certain layer round the

t For oscillations of a half-plane (parallel to its edge) there is an additional frictional force due to edge effects.
The problem of the motion of a viscous fluid caused by oscillations of a half-plane, and also the more general
problem of the oscillations of a wedge with any angle, can be solved by a class of solutions of the equation
6. f + k2 f = 0, used in the theory of diffraction by a wedge. We give here, for reference, only one result: the
increase in the frictional force on a half-plane, arising from the edge effect, can be regarded as the result of
increasing the area of the half-plane by moving the edge a distance tc5, with (j as in (24.4) (L. D. Landau 1947).

Basset historic term

added mass/ acceleration
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The continuum-mechanical modeling of sediments depends 
on its compaction, the particle volume fraction 

�

 if φ is smaller than the random loose packing with φm ≈ 0.50 
concentrated suspension 

if φ is larger than the random close packing with φM ≈ 0.65  
the sediment behaves as a poro-elastic solid. 

volume of particules 
volume 

=
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ensemble average
distribution function

volumic average

ergodicity…
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2 Two-phase description of solid-liquid mixtures

2.1 Balance of mass and momentum

In a coarse-grained description of a solid-liquid mixture, the carrier liquid is
depicted by the volume fraction 1 − φ and the mean velocity Vf , while φ and
Vp are the corresponding quantities for the solid particles. The particles and
the liquid are generally considered as incompressible, meaning that the true
mass densities (ρp for the solid particles and ρf for the fluid) are constant. In
this case mass conservation amounts to volume conservation expressed by the
two equations

∂φ

∂t
+ ∇ · (φVp) = 0 , (1)

∇ · V = 0 , (2)

where

V = φVp + (1 − φ)Vf (3)

is the volume-averaged velocity of the mixture. Each phase obeys a momentum
balance written as

ρf
dfV

f

dt
= −∇pf + ∇ · τ − f + ρfg , (4)

for the fluid phase and

φρp
dpV

p

dt
= φρf

dfV
f

dt
+ ∇ · σp + f + φ(ρp − ρf )g , (5)

for the particulate phase. In these equations dk/dt = ∂/∂t+Vk.∇ is the material
time-derivative of phase k, pf is the mean interstitial fluid pressure while ρp and
ρf are the constant mass per unit volume of the particles and the fluid phase.
The above momentum equations contain two different stress tensors, τ and σp,
and the inter-phase force f . While f and τ are created by the carrier liquid,
the stress σp is bound to direct inter-particle forces exclusively, i.e. to contact,
collision and colloidal forces. In a suspended sediment the forces which develop
in the liquid between two approaching particles are large enough to prevent
most of the contacts or collisions. Hence, in a suspended sediment σp is due to
colloidal forces only while in compact sediments with φm < φ < φM , the stress
σp is due to contacts and collisions mainly. To close the flow description we now
seek constitutive relations expressing f , τ and σp in terms of the two velocities
and the particle volume fraction.

2.2 Constitutive laws for the stresses and the interphase
force

The suspension stress τ will be supposed to be Newtonian-like

τij = 2ηfη(φ) Eij , (6)
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Continuum approach

laminar transport the exception. However, pioneering experiments [1] and more
recent ones [2, 3, 4] using oil or glycerine as the carrier fluid were for us an
incitation to develop models of laminar sediment transport. The issue is then
to understand how a laminar shear flow can induce the motion of a compact
sediment with more or less permanent contacts between particles and the pur-
pose of the present article is to propose a continuum-mechanical description of
those phenomena. A first description was proposed some time ago by Leighton
and Acrivos [5] with the assumption that the moving sediment behaves like a
viscous suspension for all sediment concentrations. We adopt here a slightly dif-
ferent point of view, distinguishing two different parts in the moving sediment
: a suspension (similar to that considered in [5]) for concentrations up to the
random loose packing and a very compact mixture (or wet granular medium)
for higher concentrations up to the random close packing. Our purpose is to
see what predictions of the Leighton-Acrivos model are modified by the new
description.

We will consider noncohesive sediments only, i.e. a collection of rigid parti-
cles surrounded by a liquid and with no interparticle forces except contact or
collision forces. The continuum-mechanical modelling of this sediment depends
on its compaction and the particle volume fraction φ plays a role of utmost
importance. When φ is smaller than a characteristic value φm (referred to as
the random loose packing with φm ≈ 0.50 for spherical particles) the sediment
behaves as a more or less concentrated suspension in which the particles interact
through liquid-mediated (hydrodynamic) forces mainly. We call it a suspended
sediment. When φ is larger than a second caracteristic value φM (the random
close packing of order φM ≈ 0.65 for spherical particles) the sediment behaves
as a poro-elastic solid. Sediments with solid fractions in the intermediate range
between φm and φM have special features. These sediments behave much like
a dense granular liquid in which the particles interact through contact forces
mainly. A sediment with φm < φ < φM will be referred to as a compact sed-
iment. Both compact sediment and suspended sediment can move when sub-
mitted to forces, the main difference being that compact sediments need some
minimal forces to move and that they move with much smaller velocities than
suspended sediments.

There is not yet a general agreement on the way to describe compact sedi-
ments in unsteady motion, mainly because the stress representing the contact
forces between grains is not yet established on firm grounds in that case. This
is the reason why we will restrict our constitutive relations to steady and fully
developed laminar shear flows representative of sediment transport phenomena.
Erosion being an unsteady phenomenon will not be considered hereafter. In
section 2 a convenient form of the mass and momentum balances of a sediment
is presented, together with constitutive relations for steadily sheared sediments.
Section 3 presents the non-dimensional form of the equations relevant to sedi-
ment transport phenomena. To obtain analytical solutions we then restrict the
discussion to small particle Reynolds numbers : Section 4 deals with horizontal
sediments and section 5 with inclined ones, and both sections aim at giving
an expression for the sediment flux as a function of the applied shear and the
sediment slope.
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2 Two-phase description of solid-liquid mixtures

2.1 Balance of mass and momentum

In a coarse-grained description of a solid-liquid mixture, the carrier liquid is
depicted by the volume fraction 1 − φ and the mean velocity Vf , while φ and
Vp are the corresponding quantities for the solid particles. The particles and
the liquid are generally considered as incompressible, meaning that the true
mass densities (ρp for the solid particles and ρf for the fluid) are constant. In
this case mass conservation amounts to volume conservation expressed by the
two equations

∂φ

∂t
+ ∇ · (φVp) = 0 , (1)

∇ · V = 0 , (2)

where

V = φVp + (1 − φ)Vf (3)

is the volume-averaged velocity of the mixture. Each phase obeys a momentum
balance written as

ρf
dfV

f

dt
= −∇pf + ∇ · τ − f + ρfg , (4)

for the fluid phase and

φρp
dpV

p

dt
= φρf

dfV
f

dt
+ ∇ · σp + f + φ(ρp − ρf )g , (5)

for the particulate phase. In these equations dk/dt = ∂/∂t+Vk.∇ is the material
time-derivative of phase k, pf is the mean interstitial fluid pressure while ρp and
ρf are the constant mass per unit volume of the particles and the fluid phase.
The above momentum equations contain two different stress tensors, τ and σp,
and the inter-phase force f . While f and τ are created by the carrier liquid,
the stress σp is bound to direct inter-particle forces exclusively, i.e. to contact,
collision and colloidal forces. In a suspended sediment the forces which develop
in the liquid between two approaching particles are large enough to prevent
most of the contacts or collisions. Hence, in a suspended sediment σp is due to
colloidal forces only while in compact sediments with φm < φ < φM , the stress
σp is due to contacts and collisions mainly. To close the flow description we now
seek constitutive relations expressing f , τ and σp in terms of the two velocities
and the particle volume fraction.

2.2 Constitutive laws for the stresses and the interphase
force

The suspension stress τ will be supposed to be Newtonian-like

τij = 2ηfη(φ) Eij , (6)
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Quelle forme du modele a deux fluides est la plus
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On part des bilans de quantite de mouvement d’une suspension de particules
(indice p) dans un fluide porteur (indice f) sous la forme generale

φρp
dpup

dt
+∇ · (φρp < u′

p ⊗ u′

p >) = ∇ · σpp + Fpf − φ∇pf + φρpg (1)

(1 − φ)ρf
dfuf

dt
+∇ · ((1 − φ)ρf < u′

f ⊗ u′

f >) = ∇ · τf − Fpf

−(1− φ)∇pf + (1− φ)ρfg (2)

Dans ces equations les contraintes σpp sont liees aux forces directes Fpp entres
les particules (comme les forces colloidales, les forces de collision ou les forces
de contact) et sa definition generale est

σpp = n <
Rpp

2
⊗ Fpp > (3)

avecRpp le vecteur joignant les centres de deux particules, n le nombre moyen de
particules par unite de volume, et < · · · > une moyenne sur toutes les particules.
Dans ces equations on a extrait le role de la pression moyenne du fluide pf de
sorte que les definitions de la force inter-phase Fpf et de la contrainte τf sont

Fpf = n <

∮
(σf0 + pfI) · nds > (4)

τf = 2ηfE + n <

∮
r⊗ (σf0 + pfI) · ndS (5)

Dans ces definitions les integrales se font sur la surface d’une particule, σf0 ·ndS
represente la force locale (non moyennee) exercee par le fluide sur un element
de surface d’une particule et r le vecteur joignant le centre d’une particule a
un point de sa surface. La viscosite du fluide est ηf et E represente le taux de
deformation moyen de la suspension.

On note que σf0 + pfI = (pf − p0f )I + 2ηfef0 avec p0f et ef0 les valeurs lo-
cales et instantanees (non-moyennees) de la pression et du taux de deformation
du fluide. La fluctuation de pression pf −p0f depend pour partie de phenomenes
lies a la densite ρf du fluide et pour partie a sa viscosite ηf . On est donc amene a
partager la force Fpf et la contraintes τf en parties inertielles (liees par exemple
a la turbulence et (ou) a la masse ajoutee) et visqueuses

Fpf = F+ Fv , τf = τ + τv . (6)
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: a suspension (similar to that considered in [5]) for concentrations up to the
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Fpf = F+ Fv , τf = τ + τv . (6)
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Si on pense que les forces directes inter-particulaires Fpp ne dependent pas de
l’etat laminaire ou turbulent du fluide, on ne fait pas de decomposition de σpp.
Les bilans de quantite de mouvement se presentent maintenant sous la forme

φρp
dpup

dt
= ∇ · σp + F+ Fv − φ∇pf + φρpg (7)

(1− φ)ρf
dfuf

dt
= ∇ · σf +∇ · τv − F− Fv − (1− φ)∇pf + (1 − φ)ρfg (8)

avec les definitions

σp = σpp − φρp < u′

p ⊗ u′

p > (9)

σf = τ − (1− φ)ρf < u′

f ⊗ u′

f > . (10)

Ce n’est que maintenant que l’on peut completer ce resultat avec la proposition
de Jackson qui consiste a exprimer la force visqueuse sous la forme

Fv = φ∇ · τv + (1 − φ)fv (11)

et obtenir ainsi

φρp
dpup

dt
= ∇ · σp + F+ φ∇ · τv + (1− φ)fv − φ∇pf + φρpg (12)

(1− φ)ρf
dfuf

dt
= ∇ · σf − F+ (1 − φ)∇ · τv − (1− φ)fv

−(1− φ)∇pf + (1− φ)ρfg . (13)

Si on pense que l’on est en droit de negliger toutes les quantites liees a la
turbulence du fluide et a la masse ajoutee (σf et F) on obtient alors les bilans
simplifies

φρp
dpup

dt
= φρf

dfuf

dt
+∇ · σp + fv + φ(ρp − ρf )g (14)

ρf
dfuf

dt
= ∇ · τv − fv −∇pf + ρfg . (15)

Mais si on a des raisons de penser que les fluctuations de vitesse du fluide jouent
un role important alors il faut retablir σf et F et utiliser les bilans (12) et (13)
.

2
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for the fluid phase and

φρp
dpV

p

dt
= φρf

dfV
f

dt
+ ∇ · τp + f + φ(ρp − ρf )g , (4)

for the solid phase. In these equations dk/dt = ∂/∂t + Vk.∇ is the material
time-derivative of phase k and pf is the mean interstitial fluid pressure. The
above momentum equations contain two different stress tensors, τ and τp, and
the inter-phase force f . While f and τ are created by the carrier liquid, the stress
τp is bound to direct inter-particle forces exclusively, i.e. to contact, collision
and colloidal forces. In a suspended sediment the forces which develop in the
liquid between two approaching particles are large enough to prevent most of
the contacts or collisions. Hence, in a suspended sediment τp is due to colloidal
forces mainly while in compact sediments with φm < φ < φM (where φm ≈ 0.55
and φM ≈ 0.65 are the random loose and random close packing respectively) the
stress τp is due to contacts and collisions mainly. To close the flow description
we now seek constitutive relations expressing f , τ and τp in terms of the two
velocities and the particle volume fraction.

2.2 Constitutive laws for the stresses and the interphase
force

The suspension stress τ will be supposed to be Newtonian-like

τij = 2ηfη(φ) Eij , (5)

where Eij = 1/2(∂Vi/∂xj + ∂Vj/∂xi) is the mean strain rate of the suspen-
sion with V defined in (2). Since regions of small particle concentration will
not matter for the sediment transport it will be enough to use a very simple
expression for the relative viscosity

η(φ) =
1

1 − φ/φM
, (6)

with a divergence at the random close packing. The relative motion between the
particles and the liquid is small and results obtained with low Reynolds-number
hydrodynamics can be used with confidence. The inter-phase force is written as
the sum of a drag force and a migration force

f = −
φηf

d2
λ(φ)(Vp − V) − φ∇(ηfν(φ)γ̇) (7)

where ηf is the liquid viscosity, d is the particle diameter and γ̇ = (2EijEij)1/2

is the strength of the shear flow. The drag force depends on λ(φ) which depicts
the drag increase with particle concentration. We adopt the Richardson-Zaki
expression [4]

λ(φ) =
18

(1 − φ)5
. (8)

Note that d2/φλ(φ) can be considered as the permeability of the particulate
phase and that it has no singular behavior at the random close packing. The
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for the solid phase. In these equations dk/dt = ∂/∂t + Vk.∇ is the material
time-derivative of phase k and pf is the mean interstitial fluid pressure. The
above momentum equations contain two different stress tensors, τ and τp, and
the inter-phase force f . While f and τ are created by the carrier liquid, the stress
τp is bound to direct inter-particle forces exclusively, i.e. to contact, collision
and colloidal forces. In a suspended sediment the forces which develop in the
liquid between two approaching particles are large enough to prevent most of
the contacts or collisions. Hence, in a suspended sediment τp is due to colloidal
forces mainly while in compact sediments with φm < φ < φM (where φm ≈ 0.55
and φM ≈ 0.65 are the random loose and random close packing respectively) the
stress τp is due to contacts and collisions mainly. To close the flow description
we now seek constitutive relations expressing f , τ and τp in terms of the two
velocities and the particle volume fraction.

2.2 Constitutive laws for the stresses and the interphase
force

The suspension stress τ will be supposed to be Newtonian-like

τij = 2ηfη(φ) Eij , (5)

where Eij = 1/2(∂Vi/∂xj + ∂Vj/∂xi) is the mean strain rate of the suspen-
sion with V defined in (2). Since regions of small particle concentration will
not matter for the sediment transport it will be enough to use a very simple
expression for the relative viscosity

η(φ) =
1

1 − φ/φM
, (6)

with a divergence at the random close packing. The relative motion between the
particles and the liquid is small and results obtained with low Reynolds-number
hydrodynamics can be used with confidence. The inter-phase force is written as
the sum of a drag force and a migration force

f = −
φηf
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λ(φ)(Vp − V) − φ∇(ηfν(φ)γ̇) (7)

where ηf is the liquid viscosity, d is the particle diameter and γ̇ = (2EijEij)1/2

is the strength of the shear flow. The drag force depends on λ(φ) which depicts
the drag increase with particle concentration. We adopt the Richardson-Zaki
expression [4]

λ(φ) =
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Note that d2/φλ(φ) can be considered as the permeability of the particulate
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is the strength of the shear flow. The drag force depends on λ(φ) which depicts
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Appendix A
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Appendix B
This Appendix summarizes the viscous resuspension theory of Leighton & Acrivos

(1986). The origin of the vertical y-axis here is set at the location of the interface
at rest, as in their paper. The mixture is assumed to behave as a Newtonian fluid
with density ⇢(�) and e↵ective viscosity µr(�)µ, where µr(�) is the relative viscosity
(µr = 1 for the pure fluid). For a pure shearing flow, integrating the x-momentum
conservation equation, @y(µ@yU) = 0, gives

1

18
µr

dU/VS

dy/d
= ⇥, (B 1)

where VS = (⇢p � ⇢)gd2/18µ is the Stokes settling velocity of a single sphere. The
mass conservation of the particles expressing the equilibrium between downwards
sedimentation and upwards di↵usion, can be written as

f(�)VS�+ (�d2/4)D(�)@y� = 0. (B 2)

Here, the first term is the sedimentation flux, where f(�) is the ‘hindrance function’
taking into account the retarding e↵ect of the other spheres on the Stokes settling
velocity. The second term is the shear-induced di↵usion flux, where D(�) = O(1) is the
dimensionless di↵usion coe�cient (Leighton & Acrivos 1987). The empirical relations
for f(�), µr(�) and D(�) proposed by Leighton & Acrivos (1986) are
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with �0 = 0.58. Then, the upper and lower bounds of the resuspended layer at y = hu
and y = �hl , respectively, are found to be
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Figure 6. Sketch of the Couette resuspension flow.

particle concentration decreases from �0 ⇡ 0.58 to zero. Leighton & Acrivos (1986)
found that the thickness of the moving bed increases linearly with the shear stress,
according to

hm

d
⇡ 13.7⇥. (11)

(Note that the numerical constants are very sensitive to �0: the value �0 = 0.65 used
by Bagnold leads to hm/d ⇡ 29⇥.) Equations (B 5) and (B 6) in Appendix B show that
the vertical profiles of the concentration �(y) and the velocity U(y) of the mixture
can be represented by a single curve when height y and velocity U are normalized by
⇥d and ⇥2VS , respectively, where VS = (⇢p �⇢)gd2/18µ is the Stokes settling velocity
of a single sphere. These normalized profiles are shown in figure 7, together with the
relative viscosity profile µr(�) (µr = 1 for the pure fluid). The particle transport rate
can be obtained from

Q =

Z 0

�hm

�(y)U(y) dy, (12)

and is found to be
Q

VSd
= C⇥3, C ⇡ 7.5. (13)

3.2. Threshold for particle transport

It is well-known that settled particles move only if the fluid shear stress exceeds some
threshold value. Several studies have been devoted to the determination of the critical
fluid conditions for incipient transport of fine grains on a flat bed. For cohesionless
sediments, and for ‘turbulent’ particle Reynolds numbers Re

⇤

smaller than 0.1, the
threshold Shields number ⇥t is found to be between 0.17 and 0.26 (Mantz 1977;
White 1940; White 1970; Yalin & Karahan 1979). Taking into account the di�culty
in defining this threshold, which has been thoroughly discussed by Mantz (1977), we
assume in the following that ⇥t = 0.2.

The resuspension theory of Leighton & Acrivos does not take into account the
above threshold. Moreover, since this theory considers the moving bed as a continuous
medium, it might be valid only when the moving bed is at least a few particle
diameters thick. However, experiments (Leighton & Acrivos 1986) showed that the
resuspension height grows linearly as predicted by (11), provided that the excess shear
stress (⇥ � ⇥t) is considered, where ⇥t ⇡ 0.26 is close to the expected threshold for
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Appendix A
The integration constants in (2) are given by

C1(kh, klv) =
B+

� B�

A+B�

� A�B+
, C2(kh, klv) = �

A+
� A�

A+B�

� A�B+
, (A 1)

with

A± =

Z kh

0

e±Y Ai(z(Y )) dY , B± =

Z kh

0

e±Y Bi(z(Y )) dY ,

and

z(Y ) =
1

klv
(Y � i(klv)

3)ei⇡/6,

and the streamfunction is given by

k2

�
 ̂ (y) =

1

2

⇢
e�ky

Z ky

0

eY !̂(Y ) dY + eky
Z kh

ky

e�Y !̂(Y ) dY

�
+ 1

2e
�ky. (A 2)

Appendix B
This Appendix summarizes the viscous resuspension theory of Leighton & Acrivos

(1986). The origin of the vertical y-axis here is set at the location of the interface
at rest, as in their paper. The mixture is assumed to behave as a Newtonian fluid
with density ⇢(�) and e↵ective viscosity µr(�)µ, where µr(�) is the relative viscosity
(µr = 1 for the pure fluid). For a pure shearing flow, integrating the x-momentum
conservation equation, @y(µ@yU) = 0, gives

1

18
µr

dU/VS

dy/d
= ⇥, (B 1)

where VS = (⇢p � ⇢)gd2/18µ is the Stokes settling velocity of a single sphere. The
mass conservation of the particles expressing the equilibrium between downwards
sedimentation and upwards di↵usion, can be written as

f(�)VS�+ (�d2/4)D(�)@y� = 0. (B 2)

Here, the first term is the sedimentation flux, where f(�) is the ‘hindrance function’
taking into account the retarding e↵ect of the other spheres on the Stokes settling
velocity. The second term is the shear-induced di↵usion flux, where D(�) = O(1) is the
dimensionless di↵usion coe�cient (Leighton & Acrivos 1987). The empirical relations
for f(�), µr(�) and D(�) proposed by Leighton & Acrivos (1986) are

f(�) =
1 � �

µr(�)
, µr(�) =

✓
1 +

1.5�

1 � �/�0

◆2

, D(�) = 1
3�

2(1 + 1
2 exp(8.8�)), (B 3a–c)

with �0 = 0.58. Then, the upper and lower bounds of the resuspended layer at y = hu
and y = �hl , respectively, are found to be

hu

d
= 9

2⇥

Z �0

0

✓
1

�
�

1

�0

◆
D

fµr
d� ⇡ 1.86⇥, (B 4a)

hl

d
= 9

2⇥

Z �0

0

1

�0

D

fµr
d� ⇡ 11.8⇥. (B 4b)

322 F. Charru and H. Mouilleron-Arnould

The height y and velocity U at which the volume concentration is � are given by

y + hl

d
= 9

2⇥

Z �0

�

1

�

D

fµr
d�, (B 5)

U

VS

= 4(9
2 )

2⇥2

Z �0

�

1

�

D

fµ2
r

d�. (B 6)

Finally, the particle flow rate is given by

Q

VSd
=

1

VSd

Z hu

�hl

�U dy = C⇥3, (B 7)

with

C = 4(9
2 )

3

Z �0

0

⇢
D

fµr

Z �0

�

1

�

D

fµ2
r

d�

�
d� ⇡ 7.5.

Appendix C
By analogy with the sediment transport formula proposed by Bagnold (1956), the

expression
Q

VSd
= C⇥2(⇥ �⇥t) (C 1)

could also be used for the particle transport rate. The critical fluid thickness above
which the bed is unstable as soon as particles move is still defined by (24) with
⇥c/⇥t = 1. For smaller fluid thickness, the moving bed becomes unstable at the
critical Shields number ⇥c2 defined by

⇥c2

⇥t

=
1

3

(
1 +

⇢
1 + 3

⇥2
c

⇥2
t

�1/2
)

(C 2)

where ⇥c is given by (24). Thus, the range of stable Shields number is larger than that
obtained from the particle transport formula (15). The band of unstable wavenumbers
is also larger, by a factor (3 � 2⇥t/⇥)3/2 for ⇥ < 0.33 and by a factor (3 � 2⇥t/⇥)1/2

for ⇥ > 0.33.
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Instability of a bed of particles sheared by a
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The instability of a bed of particles sheared by a viscous fluid is investigated theor-
etically. The viscous flow over the wavy bed is first calculated, and the bed shear
stress is derived. The particle transport rate induced by this bed shear stress is
calculated from the viscous resuspension theory of Leighton & Acrivos (1986). Mass
conservation of the particles then gives explicit expressions for the wave velocity
and growth rate, which depend on four dimensionless parameters: the wavenumber,
the fluid thickness, a viscous length and the shear stress. The mechanism of the
instability is given. It appears that for high enough fluid-layer thickness, long-wave
instability arises as soon as grains move, while short waves are stabilized by gravity.
For smaller fluid thickness, the destabilizing e↵ect of fluid inertia is reduced, so that
the moving flat bed is stable for small shear stress, and unstable for high shear stress.
The most amplified wavelength scales with the viscous length, in agreement with the
few available experiments for small particle Reynolds numbers. The results are also
compared with related studies for turbulent flow.

1. Introduction
When an initially flat bed of small heavy particles is sheared by a clear fluid, the bed

is unstable and ripples grow. Such flows, which are encountered in many industrial
applications and in the natural environment, can be either oscillating or steady. Sand
ripples observed in shallow water along beaches correspond to the oscillating case,
the oscillating flow near the bed being created by surface waves (Blondeaux 1990).
Ripples observed in rivers or in closed or open channels correspond to the steady
case; here, small deformations of the upper fluid surface do not couple with the bed,
so long as the flow depth is great enough. This paper is devoted to the latter case of
ripple formation under steady flow; more precisely, we show, on the basis of a simple
analytical model, that a viscous shear flow may be responsible for the bed instability.

Sheared beds of particles have been studied within two di↵erent contexts, chemical
engineering and hydraulic engineering. Within the former context, the resuspension
of small particles due to hydrodynamic interactions was first studied by Gadala-
Maria & Acrivos (1980). For vanishing particle Reynolds number, the height of
the resuspended layer grows linearly with the shear stress, and is typically a few
particle diameters thick for moderate shear stress (Leighton & Acrivos 1986). The
stability of such resuspension flows has not been studied extensively. However, several
Poiseuille flow experiments show the appearance of waves at the interface between the
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no threshold

10 M. Ouriemi, P. Aussillous, and É. Guazzelli
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Table 4. Bed-load thickness, particle flow rate, and Shields number.

keep for now the variation of φ inside region (II) to obtain the pressure of the particle
phase through equation (3.4). Indeed, this variation divides the apparent weight of the
first monolayer by two which affects the whole granular media pressure and then the
solid friction. Equations (3.4), (3.5), (3.9) or (3.10) are solved to determine p̄p(ȳ), Ū(ȳ),
and ūp(ȳ) in each region by matching Ū and p̄p at the different interfaces and using the
boundary conditions (3.7) in the limit K(φ0) ≪ h2, see table 3.

Inside the bed, both particle and fluid phases move at the velocity of the mixture
as the Darcy drag term is dominant in that limit. In other words, there is very little
slip between the two phases, i.e. ūp ≈ ūf ≈ Ū in regions (II), (III), and (IV). Figure
3 shows the good agreement between the numerical and analytical profiles for a large
enough Shields number [case (c)]. In that latter case, the assumption K(φ0) ≪ D2 is
verified inside the bed except very close to the interface where the numerical profile of the
particle velocity becomes more sharpened as a result of the use of a variable permeability
coefficient. Also, at the top of the bed (approximately at half a grain size from the top),
the fluid analytical and numerical profiles do not coincide perfectly as a variable effective
viscosity is used in the numerical calculation. For smaller Shields numbers [cases (a) and
(b)], the numerical simulation shows a slip between the two phases that the analytical
calculation cannot capture within its hypotheses.

This calculation also yields the bed-load thickness, h̄p − h̄c, the particle and fluid flow-
rates, q̄p and q̄f , the Shields number, θ, as a function of the bed-load thickness, h̄p − h̄c,
see table 4. Note that the bed-load thickness varies linearly with the Shields number.
The calculation cannot give the onset of motion that is observed numerically owing to
its previously mentioned hypotheses. Nonetheless, considering that the critical Shields
number, θc, is given by the value of θ for h̄p − h̄c = d̄, i.e. corresponding to a monolayer
in motion, yields to

θc =
∂p̄f

∂x̄
+ µ

φ0

2
≈ µ

φ0

2
, (3.11)

as ∂p̄f/∂x̄ = O(d̄) at incipient motion. We recover that this threshold value is propor-
tional to the tangent of the angle of repose. Another interesting finding is that it is also
proportional to the particle volume fraction in the bulk of the bed. Taking φ0 = 0.55 and
µ = 0.43 as deduced by Cassar, Nicolas & Pouliquen (2005) for glass spherical particles
yields θc = 0.12 in good agreement with the experiments.

In the limit Re2D ≪ (µsφ0/12)
[

(D − hp)
3 /d3

]

Ga with Ga = ρf∆ρgd3/η2 and

random loose packing  
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the maximum value at which the effective viscosity of the suspension becomes infinite, even small 
variations of the concentration strongly influence this effective viscosity and therefore the stability 
of the flow. Zhang et al. (1992) and Schaflinger (1994) also discovered the existence of two different 
convective instabilities: relatively long and short waves, which coexist within a certain range of 
parameters (Schaflinger 1994). 

In this paper we report the results of resuspension experiments which were performed in a 
pressure-drive two-dimensional Hagen-Poiseuille channel. Here, instead of measuring the resus- 
pension height (Leighton & Acrivos 1986; Schaflinger et al. 1990), we focused our attention to the 
pressure drop which is relatively easy to measure and is also of great practical interest, e.g. in oil 
prospecting (Unwin & Hammond 1994). In addition, we were able to determine from video 
recordings the particle velocities at the interface. We found that, if the Shields number K was small, 
the pressure drop coefficient K was in all cases, slightly larger than predicted theoretically 
(Schaflinger et al. 1990), and that the observed particle velocity at the weakly wavy interface was 
in good agreement with corresponding theoretical results by Schaflinger et al. (1990). Moreover, 
with the well-mixed particle concentration q~s held constant, K was found to decrease abruptly at 
~c ~ 0.006 and to attain values surprisingly lower than those predicted by theory. At the same time 
the interfacial waves became very strong and eventually, by breaking, released clouds of detached 
particles moving above the original interface. Under those conditions, the measured particle 
velocity at the interface was several times larger than calculated. A further increase in K raised the 
pressure drop coefficient K which eventually reached a value almost independent of ~:. 

Finally, when the bottom of the channel was covered by a monolayer of these same spherical 
particles, a ripple type instability was observed during the experiments. The wavelength of this 
instability was always equal to approximately 10 particle diameters and did not change with 
increasing flow rate of the clear liquid. 

2. T H E O R E T I C A L  B A C K G R O U N D  

Consider a suspension of heavy spheres of uniform size and density resuspended in a 2-D 
Hagen-Poiseuille channel, as depicted in figure 1. 

The symbol h0 denotes the height of the sediment which would be attained if the flow were 
stopped and the particle layer had reached its maximum volume concentration ~b 0 ~ 0.58. The 
position of the top of the resuspended layer in the presence of a laminar shear flow with velocity 
U(z) is denoted by h,. Q is the volumetric flux of clear liquid per unit depth, qh refers to the particle 
volume fraction if the suspension were to be well-mixed,/~ is the viscosity, p the density and v the 
kinematic viscosity. The subscript m refers to the particle-fluid mixture within the resuspended 
layer with both the viscosity /~m and the density Pm being functions of the local particle 
concentration ~b (z). Where necessary within the text, the subscripts 1 and 2 will distinguish between 
the clear fluid and particle properties, respectively. Furthermore, the symbol g refers to the 
gravitational constant. Finally, the total height of the 2-D duct is denoted by 2B. 

For uni-directional fully-developed laminar flows, the particle flux due to a gradient in 
concentration and a gradient in the shear stress ~ is balanced by the particle flux due to gravity, 
hence 

2dpa2gE . . . . . .  2,~, dO 1 dz 
9v~ y(cp)+~tz;a /)~-Z +~)(z)a2/~-  ~zz=0,  [1] 

~Z 
Q' ~s 

h o - -  

X 

- ~ ¢---0 I~1, Pl 

/ 
¢ = % 

htBtB 
Figure 1. Schematic of a 2D Hagen-Poiseuille flow indicating the notation. 
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Figure I0. Measured interracial velocity ( 0 )  and 
compar ison  with the theoretical velocity profile (solid line). 
The dotted line marks  the position of  the theoretically 
predicted interface, x = 0.004, ~bs = 0.016, Pt = 963 kg/m 3, 
vt = 2.86 × 10-6m2/s (water-ethanol  mixture); a = 185/~m, 

p: = 1043 kg/m 3 (polystyrene beads). 
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Figure 11. Measured interfacial velocity ( 0 )  and 
compar ison  with the theoretical velocity profile (solid line). 
The dotted line marks  the position of  the theoretically 
predicted interface, x = 0.01, ~b s = 0.065, Pl = 963 kg/m 3, 
v~ = 2.86 x 10 6 m2/s (water-e thanol  mixture); a = 185 ~m,  

P2 = 1043 kg/m 3 (polystyrene beads). 

coefficient always reached a minimum which coincides with the occurrence of very strong interfacial 
waves together with the creation of clouds of detached particles. Eventually, K increased and 
attained a value almost independent of  ~c. Due to technical limitations we were unable to run 
experiments for ~b S > 0.06 and larger x. 

Also we would like to mention that inertial life effects were always insignificant since in all cases 
the particle Reynolds number was below 0.15. 

(b) Measurements of  the particle velocity at the interface 
By means of a mirror, the top view of the duct was recorded on a video together with the side 

view at the same time. Thus, it was possible to evaluate the particle velocities at the interface and 
to study the interfacial waves. Impurities on the particle-surface enabled us to track individual 
particles over a distance of several centimeters. For small values of  the parameter  x, the experiments 
show that the particle velocity at the interface is in good agreement with that predicted theoretically 
(Schaflinger et al. 1990) even though slight interfacial instabilities were found to be present. 
Measurements for two different particle sizes are depicted in figures 10 and 12. It should be noted 

1-  

0.8- 

0.6- 

z 
0.4- 

0.2, 

0 

/ 

Y 
/ 

/ 

) 

0 0.5 1 1.5 2 2.5 
n 

Figure 12. Measured interracial velocity ( 0 )  and 
compar i son  with the theoretical velocity profile (solid line). 
The dotted line marks  the position of  the theoretically 
predicted interface, x = 0.008, <Ps = 0.008, Pl = 963 kg/m ~, 
v~ = 2.86 x 10 -6 m2/s (water-e thanol  mixture); a = 410 #m,  

P2 = 1031 kg/m 3 (polystyrene beads). 
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Figure 13. Measured interfacial velocity ( 0 )  and 
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compar i son  with the theoretical velocity profile (solid line). 
The dotted line marks  the position of  the theoretically 
predicted interface, x = 0.012, ~s = 0.053, Pl = 963 kg/m 3, 
v I = 2.86 x 10 -6 m2/s (water--ethanol mixture); a = 410 pm,  

P2 = 1031 kg/m 3 (polystyrene beads). 
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Abstraet--Resuspension is a process by which an initially settled layer of heavy particles in contact with 
a clear fluid above it is set into motion by a laminar shear flow. Experiments were performed in a 
fully-developed Hagen-Poiseuille stratified channel flow with a clear fluid overlying a suspension, in order 
to measure the pressure drop and the particle velocity at the suspension---clear fluid interface as functions 
of the well-mixed particle volume fraction q~s and a Shields number ~ which is a measure of the relative 
importance of viscous forces to those of gravity. It was found that, for a fixed feed concentration, the 
measured pressure drop coefficient K decreased abruptly at x ~ 0.006 and attained values which were 
significantly lower than those predicted theoretically. At the same time interracial waves were observed 
which eventually became very strong. A further increase in ~: led to wave destruction and the appearance 
of clouds of detached particles moving relatively rapidly above the original interface. In this range the 
pressure drop coefficient increased and reached a value almost independent of x. The intensity of wave 
breaking then lessened but remained significant. The measured particle velocity at the interface showed 
good agreement with the theory for small values of ~:. At larger values, however, the observed particle 
velocity at the interface was up to several times larger than that predicted due to the existence of a detached 
particle layer that moved very rapidly. Finally, an additional flow instability was observed, a ripple type 
of instability, when the bottom of the channel was covered by a monolayer of particles. 

Key Word~: resuspension, laminar stratified flow 

1. I N T R O D U C T I O N  

When  a clear fluid flows above an initially settled bed of heavy, non-Brownian  particles, at least 
part  of  the sediment layer will resuspend, even at low Reynolds numbers .  The physics of  this 
phenomenon ,  termed viscous resuspension, has been described in several articles (Leighton & 
Acrivos 1987a, b; Acrivos 1993). In addit ion,  a n u m b e r  of uni-direct ional  flows such as a plane 
Couette  flow (Leighton & Acrivos 1986), a plane film flow, a 2-D Hagen-Poiseui l le  channel  flow 
(Schaflinger et  al. 1990) and a quasi-unidirect ional  resuspension flow (Nir & Acrivos 1990; Kapoor  
& Acrivos 1995), which occurs in inclined gravity settling, were investigated based on a theoretical 
model  developed by Leighton & Acrivos (1986). Recently, Zhang  & Acrivos (1994) extended the 
model to study viscous resuspension in fully developed laminar  pipe flows where the flow is 
completely three-dimensional .  

Measurements  of the resuspension height (Leighton & Acrivos 1986; Schaflinger et  al. 1990) are 
in overall agreement  with the theoretical predictions. The data show, however, considerable scatter 
which was a t t r ibuted both to the difficulties in performing the measurements  and to the presence 
of  interfacial waves. Zhang  et  al. (1992) carried out  a l inear stability analysis and found that a 2-D 
Hagen-Poiseui l le  resuspension flow is almost  always unstable  to interfacial waves. In performing 
this analysis, these authors  assumed that the particle concent ra t ion  was uni form throughout  the 
resuspension layer, which is justified by the base-state results even for moderate  flow-rates of the 
clear liquid. A subsequent  numerical  study of this problem (Schaflinger 1994) revealed, however, 
the linear stability of the system is quite sensitive to the value of this uni form concentra t ion.  This 
is due to the fact that, since the concent ra t ion  within the suspension layer is typically always near 

tPresent address: City College of New York, T-IM, 140th Street at Convent Avenue, New York, NY 10031, U.S.A. 
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Figure 1. Sketch of a particle bed submitted to a Poiseuille (left) or a Couette (right)
flow in a two dimensional channel.

where ηe is the effective viscosity of the mixture. The choice of this Newtonian form for
σf

ij can be justified for dilute suspensions of Stokesian particles by exact closure calcula-
tions done by Zhang & Properetti (1997) and Jackson (1997). In that limit, the familiar
Einstein correction to the viscosity of the pure fluid, ηe = η(1 + 5φ/2), is recovered.
For non dilute suspensions, one needs to rely on empirical relations expressing ηe/η as
a function of φ, see e.g. Stickel & Powel (2005). Following Bagnold (1956) [his formula
(58)] and Goharzadeh, Khalili & Jørgensen (2005), we choose for simplicity the Einstein
viscosity in § 3 and will discuss other empirical laws in § 5.

The stress tensor of the particle phase σp
ij comprises terms coming from particle contact

interactions and particle Reynolds stress. Clearly, for a bed of particles, close contacts are
dominant. The simplest way to describe this stress coming from direct particle-particle
interactions,

σp
ij = −ppδij + τp

ij , (2.10)

is to use a Coulomb friction model where:
(a) the tangential stress is proportional to the load when the granular shear rate is

positive, i.e. is equal to µpp in two-dimensional shearing flows, with a friction coefficient
µ which mostly depends upon the particle geometry and which is given by the tangent
of the angle of repose,

(b) the tangential stress is indeterminate when the granular shear rate is zero.
This simple Coulomb model will be used in § 3. In § 5, we will also consider a constitutive
law which has been first derived for dry granular flows and has been then found successful
for submarine granular flows, see GDR Midi (2004), Jop, Forterre & Pouliquen (2006),
Cassar, Nicolas & Pouliquen (2005), and Pouliquen, Cassar, Forterre, Jop & Nicolas
(2005).

3. Calculation of bed-load transport by shearing flows

3.1. Formulation of the problem

We consider a flat particle bed of thickness hp submitted to a Poiseuille or a Couette
flow in a two dimensional channel of thickness D, see figure 1. The flow is considered
stationary and uniform. It is also parallel and the velocities Ui, uf

i , up
i reduce to their x

components denoted U , uf and up. Moreover, the x-invariance leads to ∂pp/∂x = 0. This
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On part des bilans de quantite de mouvement d’une suspension de particules
(indice p) dans un fluide porteur (indice f) sous la forme generale

φρp
dpup

dt
+∇ · (φρp < u′

p ⊗ u′

p >) = ∇ · σpp + Fpf − φ∇pf + φρpg (1)

(1 − φ)ρf
dfuf

dt
+∇ · ((1 − φ)ρf < u′

f ⊗ u′

f >) = ∇ · τf − Fpf

−(1− φ)∇pf + (1− φ)ρfg (2)

Dans ces equations les contraintes σpp sont liees aux forces directes Fpp entres
les particules (comme les forces colloidales, les forces de collision ou les forces
de contact) et sa definition generale est

σpp = n <
Rpp

2
⊗ Fpp > (3)

avecRpp le vecteur joignant les centres de deux particules, n le nombre moyen de
particules par unite de volume, et < · · · > une moyenne sur toutes les particules.
Dans ces equations on a extrait le role de la pression moyenne du fluide pf de
sorte que les definitions de la force inter-phase Fpf et de la contrainte τf sont

Fpf = n <

∮
(σf0 + pfI) · nds > (4)

τf = 2ηfE + n <

∮
r⊗ (σf0 + pfI) · ndS (5)

Dans ces definitions les integrales se font sur la surface d’une particule, σf0 ·ndS
represente la force locale (non moyennee) exercee par le fluide sur un element
de surface d’une particule et r le vecteur joignant le centre d’une particule a
un point de sa surface. La viscosite du fluide est ηf et E represente le taux de
deformation moyen de la suspension.

On note que σf0 + pfI = (pf − p0f )I + 2ηfef0 avec p0f et ef0 les valeurs lo-
cales et instantanees (non-moyennees) de la pression et du taux de deformation
du fluide. La fluctuation de pression pf −p0f depend pour partie de phenomenes
lies a la densite ρf du fluide et pour partie a sa viscosite ηf . On est donc amene a
partager la force Fpf et la contraintes τf en parties inertielles (liees par exemple
a la turbulence et (ou) a la masse ajoutee) et visqueuses

Fpf = F+ Fv , τf = τ + τv . (6)
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ȳ

ūū
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Figure 3. Numerical velocity profiles for the fluid (+) and the particles (×) in the case
of particles of batch A in fluid 3 at φ0 = 0.55 and θ = 0.048 (a), 0.094 (b), 0.62 (c) and
analytical velocity profiles given in table 3 (solid line) and obtained by skipping region
(II) (dashed line) (left). Blow-up of the profiles for the same conditions (right).

inside the bed. First, we suppose that equation (3.9) is valid everywhere in the granular
media. The fluid and solid velocity profile can be computed as shown in figure 2 (a) and
dūp/dȳ can be found to be negative in some locations. Secondly, equation (3.9) is replaced
by equations (3.10) at these locations and the velocity profiles are again calculated as
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Table 4. Bed-load thickness, particle flow rate, and Shields number.

keep for now the variation of φ inside region (II) to obtain the pressure of the particle
phase through equation (3.4). Indeed, this variation divides the apparent weight of the
first monolayer by two which affects the whole granular media pressure and then the
solid friction. Equations (3.4), (3.5), (3.9) or (3.10) are solved to determine p̄p(ȳ), Ū(ȳ),
and ūp(ȳ) in each region by matching Ū and p̄p at the different interfaces and using the
boundary conditions (3.7) in the limit K(φ0) ≪ h2, see table 3.

Inside the bed, both particle and fluid phases move at the velocity of the mixture
as the Darcy drag term is dominant in that limit. In other words, there is very little
slip between the two phases, i.e. ūp ≈ ūf ≈ Ū in regions (II), (III), and (IV). Figure
3 shows the good agreement between the numerical and analytical profiles for a large
enough Shields number [case (c)]. In that latter case, the assumption K(φ0) ≪ D2 is
verified inside the bed except very close to the interface where the numerical profile of the
particle velocity becomes more sharpened as a result of the use of a variable permeability
coefficient. Also, at the top of the bed (approximately at half a grain size from the top),
the fluid analytical and numerical profiles do not coincide perfectly as a variable effective
viscosity is used in the numerical calculation. For smaller Shields numbers [cases (a) and
(b)], the numerical simulation shows a slip between the two phases that the analytical
calculation cannot capture within its hypotheses.

This calculation also yields the bed-load thickness, h̄p − h̄c, the particle and fluid flow-
rates, q̄p and q̄f , the Shields number, θ, as a function of the bed-load thickness, h̄p − h̄c,
see table 4. Note that the bed-load thickness varies linearly with the Shields number.
The calculation cannot give the onset of motion that is observed numerically owing to
its previously mentioned hypotheses. Nonetheless, considering that the critical Shields
number, θc, is given by the value of θ for h̄p − h̄c = d̄, i.e. corresponding to a monolayer
in motion, yields to

θc =
∂p̄f

∂x̄
+ µ

φ0

2
≈ µ

φ0

2
, (3.11)

as ∂p̄f/∂x̄ = O(d̄) at incipient motion. We recover that this threshold value is propor-
tional to the tangent of the angle of repose. Another interesting finding is that it is also
proportional to the particle volume fraction in the bulk of the bed. Taking φ0 = 0.55 and
µ = 0.43 as deduced by Cassar, Nicolas & Pouliquen (2005) for glass spherical particles
yields θc = 0.12 in good agreement with the experiments.

In the limit Re2D ≪ (µsφ0/12)
[

(D − hp)
3 /d3

]

Ga with Ga = ρf∆ρgd3/η2 and

random loose packing,     friction  
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Table 4. Bed-load thickness, particle flow rate, and Shields number.

keep for now the variation of φ inside region (II) to obtain the pressure of the particle
phase through equation (3.4). Indeed, this variation divides the apparent weight of the
first monolayer by two which affects the whole granular media pressure and then the
solid friction. Equations (3.4), (3.5), (3.9) or (3.10) are solved to determine p̄p(ȳ), Ū(ȳ),
and ūp(ȳ) in each region by matching Ū and p̄p at the different interfaces and using the
boundary conditions (3.7) in the limit K(φ0) ≪ h2, see table 3.

Inside the bed, both particle and fluid phases move at the velocity of the mixture
as the Darcy drag term is dominant in that limit. In other words, there is very little
slip between the two phases, i.e. ūp ≈ ūf ≈ Ū in regions (II), (III), and (IV). Figure
3 shows the good agreement between the numerical and analytical profiles for a large
enough Shields number [case (c)]. In that latter case, the assumption K(φ0) ≪ D2 is
verified inside the bed except very close to the interface where the numerical profile of the
particle velocity becomes more sharpened as a result of the use of a variable permeability
coefficient. Also, at the top of the bed (approximately at half a grain size from the top),
the fluid analytical and numerical profiles do not coincide perfectly as a variable effective
viscosity is used in the numerical calculation. For smaller Shields numbers [cases (a) and
(b)], the numerical simulation shows a slip between the two phases that the analytical
calculation cannot capture within its hypotheses.

This calculation also yields the bed-load thickness, h̄p − h̄c, the particle and fluid flow-
rates, q̄p and q̄f , the Shields number, θ, as a function of the bed-load thickness, h̄p − h̄c,
see table 4. Note that the bed-load thickness varies linearly with the Shields number.
The calculation cannot give the onset of motion that is observed numerically owing to
its previously mentioned hypotheses. Nonetheless, considering that the critical Shields
number, θc, is given by the value of θ for h̄p − h̄c = d̄, i.e. corresponding to a monolayer
in motion, yields to

θc =
∂p̄f

∂x̄
+ µ

φ0

2
≈ µ

φ0

2
, (3.11)

as ∂p̄f/∂x̄ = O(d̄) at incipient motion. We recover that this threshold value is propor-
tional to the tangent of the angle of repose. Another interesting finding is that it is also
proportional to the particle volume fraction in the bulk of the bed. Taking φ0 = 0.55 and
µ = 0.43 as deduced by Cassar, Nicolas & Pouliquen (2005) for glass spherical particles
yields θc = 0.12 in good agreement with the experiments.

In the limit Re2D ≪ (µsφ0/12)
[

(D − hp)
3 /d3

]

Ga with Ga = ρf∆ρgd3/η2 and

incipient motion
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Table 4. Bed-load thickness, particle flow rate, and Shields number.

keep for now the variation of φ inside region (II) to obtain the pressure of the particle
phase through equation (3.4). Indeed, this variation divides the apparent weight of the
first monolayer by two which affects the whole granular media pressure and then the
solid friction. Equations (3.4), (3.5), (3.9) or (3.10) are solved to determine p̄p(ȳ), Ū(ȳ),
and ūp(ȳ) in each region by matching Ū and p̄p at the different interfaces and using the
boundary conditions (3.7) in the limit K(φ0) ≪ h2, see table 3.

Inside the bed, both particle and fluid phases move at the velocity of the mixture
as the Darcy drag term is dominant in that limit. In other words, there is very little
slip between the two phases, i.e. ūp ≈ ūf ≈ Ū in regions (II), (III), and (IV). Figure
3 shows the good agreement between the numerical and analytical profiles for a large
enough Shields number [case (c)]. In that latter case, the assumption K(φ0) ≪ D2 is
verified inside the bed except very close to the interface where the numerical profile of the
particle velocity becomes more sharpened as a result of the use of a variable permeability
coefficient. Also, at the top of the bed (approximately at half a grain size from the top),
the fluid analytical and numerical profiles do not coincide perfectly as a variable effective
viscosity is used in the numerical calculation. For smaller Shields numbers [cases (a) and
(b)], the numerical simulation shows a slip between the two phases that the analytical
calculation cannot capture within its hypotheses.

This calculation also yields the bed-load thickness, h̄p − h̄c, the particle and fluid flow-
rates, q̄p and q̄f , the Shields number, θ, as a function of the bed-load thickness, h̄p − h̄c,
see table 4. Note that the bed-load thickness varies linearly with the Shields number.
The calculation cannot give the onset of motion that is observed numerically owing to
its previously mentioned hypotheses. Nonetheless, considering that the critical Shields
number, θc, is given by the value of θ for h̄p − h̄c = d̄, i.e. corresponding to a monolayer
in motion, yields to

θc =
∂p̄f

∂x̄
+ µ

φ0

2
≈ µ

φ0

2
, (3.11)

as ∂p̄f/∂x̄ = O(d̄) at incipient motion. We recover that this threshold value is propor-
tional to the tangent of the angle of repose. Another interesting finding is that it is also
proportional to the particle volume fraction in the bulk of the bed. Taking φ0 = 0.55 and
µ = 0.43 as deduced by Cassar, Nicolas & Pouliquen (2005) for glass spherical particles
yields θc = 0.12 in good agreement with the experiments.

In the limit Re2D ≪ (µsφ0/12)
[
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]

Ga with Ga = ρf∆ρgd3/η2 and

10 M. Ouriemi, P. Aussillous, and É. Guazzelli
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Table 4. Bed-load thickness, particle flow rate, and Shields number.

keep for now the variation of φ inside region (II) to obtain the pressure of the particle
phase through equation (3.4). Indeed, this variation divides the apparent weight of the
first monolayer by two which affects the whole granular media pressure and then the
solid friction. Equations (3.4), (3.5), (3.9) or (3.10) are solved to determine p̄p(ȳ), Ū(ȳ),
and ūp(ȳ) in each region by matching Ū and p̄p at the different interfaces and using the
boundary conditions (3.7) in the limit K(φ0) ≪ h2, see table 3.

Inside the bed, both particle and fluid phases move at the velocity of the mixture
as the Darcy drag term is dominant in that limit. In other words, there is very little
slip between the two phases, i.e. ūp ≈ ūf ≈ Ū in regions (II), (III), and (IV). Figure
3 shows the good agreement between the numerical and analytical profiles for a large
enough Shields number [case (c)]. In that latter case, the assumption K(φ0) ≪ D2 is
verified inside the bed except very close to the interface where the numerical profile of the
particle velocity becomes more sharpened as a result of the use of a variable permeability
coefficient. Also, at the top of the bed (approximately at half a grain size from the top),
the fluid analytical and numerical profiles do not coincide perfectly as a variable effective
viscosity is used in the numerical calculation. For smaller Shields numbers [cases (a) and
(b)], the numerical simulation shows a slip between the two phases that the analytical
calculation cannot capture within its hypotheses.

This calculation also yields the bed-load thickness, h̄p − h̄c, the particle and fluid flow-
rates, q̄p and q̄f , the Shields number, θ, as a function of the bed-load thickness, h̄p − h̄c,
see table 4. Note that the bed-load thickness varies linearly with the Shields number.
The calculation cannot give the onset of motion that is observed numerically owing to
its previously mentioned hypotheses. Nonetheless, considering that the critical Shields
number, θc, is given by the value of θ for h̄p − h̄c = d̄, i.e. corresponding to a monolayer
in motion, yields to

θc =
∂p̄f

∂x̄
+ µ

φ0

2
≈ µ

φ0

2
, (3.11)

as ∂p̄f/∂x̄ = O(d̄) at incipient motion. We recover that this threshold value is propor-
tional to the tangent of the angle of repose. Another interesting finding is that it is also
proportional to the particle volume fraction in the bulk of the bed. Taking φ0 = 0.55 and
µ = 0.43 as deduced by Cassar, Nicolas & Pouliquen (2005) for glass spherical particles
yields θc = 0.12 in good agreement with the experiments.

In the limit Re2D ≪ (µsφ0/12)
[
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]
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Figure 4. Dimensionless numerical solid flux q̄p (◦) versus numerical θ and the various
analytical approximations of q̄p, table 4 (dotted line), equation (3.13) (dashed line), and
equation (3.14) (solid line), versus analytical θ in the case of particles of batch A in fluid
3.

Re2D = ρfqf/η or equivalently θ ≪ (µφ0/2)(D − hp)/d, one finds

θ = 6
d2

D2

Re2D

Ga

(

D

D − hp

)2

, (3.12)

showing that the perturbation induced to the Poiseuille flow by the motion of the granular
media is negligible. In other words, this Shields number corresponds to the case of a
Poiseuille flow comprising a flat solid bed of height hp, see Ouriemi et al. (2007).

The bed-load flow-rate given in table 4, qp, can be further simplified to give

qp/
∆ρgd3

ηe
= φ0

θc

12

[

θ

2θc

(

θ2

θc2 + 1

)

−
1

5

]

, (3.13)

which has a viscous scaling built on the effective viscosity ηe(φ0). The dimensionless
particle flux is proportional to the particle volume fraction in the bulk of the bed and
to a function of θc and θ and not simply of the excess Shields number θ − θc. The
different particle flow-rates are plotted versus Shields numbers in figure 4 for hp = 0.5D
with φ0 = 0.55 and µ = 0.43 (yielding to θc = 0.12). The numerical flow-rate and the
analytical approximation given in table 4 are in excellent agreement while the analytical
approximation given by equation (3.13) notably deviates for θ ! 1.5 [in other words, the
agreement is good in the range of validity of equations (3.12) and (3.13].

3.4. A simple expression for the particle flux

For θ ≫ θc, equation (3.13) leads to a very simple expression

qp/
∆ρgd3

ηe
= φ0

θc

24

(

θ

θc

)3

, (3.14)

having the particle flux varying cubically with the Shields number. As shown in figure 4,
it can be used for 0.5 " θ " 1.5.

If one skips region (II) in which the porosity varies from φ0 to 0 on one particle radius
and if one assumes that the critical Shields number corresponds to the thickness of the
mobile layer being one particle size [equation (3.11)], one easily recovers this simpler
expression as velocities inside the moving bed have the parabolic profile of region (III) in

Critical Shear

Transport law
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Figure 8. (a) Numerical velocity profiles for the fluid (∆) and the solid (!) with a
Coulomb rheology and profiles for the fluid (+) and the particles (×) with the more
refined µ(I) rheology in the case of particles of batch A in fluid 3 at φ0 = 0.55 and
qf = 6.2 10−3m2s−1. (b) Blow-up for the same conditions.

and the time taken by the particle to move from one hole to the next. When an interstitial
viscous fluid is present, this dimensionless number has been found to be

I =
η

ppα
|
∂up

i

∂xj
+

∂up
j

∂xi
|, (5.8)

with α = 0.01. The following expression for the friction coefficient has been proposed

µ(I) = µs +
µ2 − µs

1 + I0
I

, (5.9)

where I0, µ2, and µs are constant which depends upon the particle material and shape
used. When the granular media is not sheared, this rheology is not valid and one simply
writes that the shear rate is zero as in the simple Coulomb model. Note that µs is the
tangent of the angle of repose and is identical to the friction coefficient µ used in the
Coulomb model.

We have solved numerically and analytically the Brinkman equation for the fluid phase
and the momentum balance equation for the mixture with this new rheology, see figure
8. Near the thresholds of motion, I ≪ I0 and µ(I) ≈ µs + (µ2 − µs)I/I0. This simplified
rheology yields the same critical Shields number, θc = µsφ0/2. For I ≫ I0, µ(I) ≈ µ2

and the same solution as in the Coulomb friction case is obtained by substituting µ by
µ2. The simple expression (3.14) for the bed-load flow-rate becomes

qp/
∆ρgd3

ηe
= φ0

(

µs

µ2

)2 θc

24

(

θ

θc

)3

. (5.10)

In the case of glass spherical particles, µ2 = 0.82, see Cassar, Nicolas & Pouliquen (2005),
and qp is only modified by a factor 1/4. Figure 8 shows that using this sophisticated
rheology does not change significantly the velocity profiles. The only difference lies inside
the granular media in motion where the fluid and particles profiles are overestimated
when using the Coulomb friction.

In summary, we have used a two-phase model having a Newtonian rheology for the
fluid-phase and friction for the particle phase to describe bed-load transport by viscous
shearing flows. The relevant equations are found to be the Brinkman equation for the fluid
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Figure 3. Numerical velocity profiles for the fluid (+) and the particles (×) in the case
of particles of batch A in fluid 3 at φ0 = 0.55 and θ = 0.048 (a), 0.094 (b), 0.62 (c) and
analytical velocity profiles given in table 3 (solid line) and obtained by skipping region
(II) (dashed line) (left). Blow-up of the profiles for the same conditions (right).

inside the bed. First, we suppose that equation (3.9) is valid everywhere in the granular
media. The fluid and solid velocity profile can be computed as shown in figure 2 (a) and
dūp/dȳ can be found to be negative in some locations. Secondly, equation (3.9) is replaced
by equations (3.10) at these locations and the velocity profiles are again calculated as

Transport law at small Shields



is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:

@!
@t
þr % !uf

!! "
¼ 0; ð1Þ

where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:

@/
@t
þr % / up

!! "
¼ 0; ð2Þ

where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:

qf
@!uf

!

@t
þr % !uf

!

&uf
!! "2

4

3

5 ¼ r % ðrf Þ ' n~f þ !qf~g; ð3Þ

qp
@/ up

!

@t
þr % / up

!
&up
!! "2

4

3

5 ¼ r % ðrpÞ þ n~f þ /qp~g; ð4Þ

where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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ticulate phase continuity equation has the same form:

@/
@t
þr % / up

!! "
¼ 0; ð2Þ
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:

rf ¼ 'pf I þ sf ¼ 'pf I þ ge rum
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where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and
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440 J. Chauchat, M. Médale / Comput. Methods Appl. Mech. Engrg. 199 (2010) 439–449

is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:
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where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:

n f 1
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¼ g !
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and

um
!
¼ !uf

!
þ/ up

!
is the velocity of the mixture.
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:

@/
@t
þr % / up

!! "
¼ 0; ð2Þ

where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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¼ g !
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:
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where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by
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¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.
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For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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um
!
¼ !uf

!
þ/ up

!
is the velocity of the mixture.

440 J. Chauchat, M. Médale / Comput. Methods Appl. Mech. Engrg. 199 (2010) 439–449

is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.
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vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1

!
can be written:

n f 1
!
¼ g !

2

K
uf
!

'up
!! "

; ð6Þ

where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by
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¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:
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where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by
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¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.
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For a viscous fluid flow in a porous media, the remaining contribu-
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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Fluid stress tensor, effective viscosity

is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.
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Following Ouriemi et al. [26], we present here the formulation
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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can be written:
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.
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Following Ouriemi et al. [26], we present here the formulation
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where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
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For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1
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where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
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A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:

rf ¼ 'pf I þ sf ¼ 'pf I þ ge rum
!
þðr um

!
ÞT

! "
; ð8Þ

where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and

um
!
¼ !uf

!
þ/ up

!
is the velocity of the mixture.

440 J. Chauchat, M. Médale / Comput. Methods Appl. Mech. Engrg. 199 (2010) 439–449

The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Fig. 1. Sketch of domain definition for the fluid–particle problem.
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Particule stress tensor, µ model

The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp
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where the rate-of-strain tensor _cp is defined as _cp ¼ rup
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dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
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and its magnitude is given by the square root of its second invariant
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. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
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sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.
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of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Fig. 1. Sketch of domain definition for the fluid–particle problem.
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:

@!
@t
þr % !uf

!! "
¼ 0; ð1Þ

where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:

@/
@t
þr % / up

!! "
¼ 0; ð2Þ

where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:
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5 ¼ r % ðrf Þ ' n~f þ !qf~g; ð3Þ
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@/ up

!

@t
þr % / up

!
&up
!! "2

4

3

5 ¼ r % ðrpÞ þ n~f þ /qp~g; ð4Þ

where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1

!
can be written:

n f 1
!
¼ g !

2

K
uf
!

'up
!! "

; ð6Þ

where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:

rf ¼ 'pf I þ sf ¼ 'pf I þ ge rum
!
þðr um

!
ÞT

! "
; ð8Þ

where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and

um
!
¼ !uf

!
þ/ up

!
is the velocity of the mixture.
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Fig. 1. Sketch of domain definition for the fluid–particle problem.
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Consequently the two-fluid model is much more expensive (ten
times in CPU time) than the mixed-fluid one for a comparable
accuracy provided one takes a regularisation parameter sufficiently
small (one order of magnitude smaller than in the two-fluid mod-
el). But one should keep in mind that the mixed-fluid model is
based on the strong assumption of zero relative velocity between

the fluid and particulate phases, which could be restrictive in ac-
tual problems.

It turns out from the results obtained in this section that the
modelling error associated with the implemented regularisation
technique is connected to the regularisation parameter value k.
Therefore in order to achieve computations with controlled accu-
racy we suggest to link the value of the regularisation parameter
to the Bingham number according to the following empirical rela-
tionship: k ¼ min 10"4; 10"4

Bn

! "
.

4. Two-phase simulation of bed-load transport in 3D
configuration

We have shown in the last section the convergence of the two-
phase numerical model compared with analytical solution for a
two-dimensional configuration. We now apply the model to
three-dimensional configurations: a square and a circular cross-
section ducts. As in the previous test case the values of the dimen-

Table 2
CPU time and number of iterations.

Mesh definition NX # NY # NZ 12 # 1 # 80 24 # 1 # 160

Two-fluid model DOFa 54450 212562
k ¼ 10"6 Niterb 1943 206

CPU time (s) 5682 5476

Mixed-fluid model DOF 36225 141561
k ¼ 10"6 Niter 269 54

CPU time (s) 438 473

k ¼ 10"7 Niter 253 75
CPU time (s) 453 589

a DOF: degrees of freedom.
b Niter: number of iterations.

Fig. 11. Mesh sensitivity of the velocity profiles obtained by numerical simulations with the mixed-fluid model for the square cross-section duct (6 # 20 # 40 and
6 # 40 # 80).

Fig. 10. Velocity profile obtained by numerical simulations with the mixed-fluid
model for the square cross-section duct (6 # 20 # 40).

Fig. 12. Velocity profile obtained by numerical simulations with the two-fluid
model for the square cross-section duct (6 # 20 # 40). The fluid phase velocity is in
blue and the particulate phase velocity is in red. An offset of 10"3 has been added to
the velocity of the particulate phase (up) to make it visible. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.

2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for

the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:

@!
@t
þr % !uf

!! "
¼ 0; ð1Þ

where ! designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:

@/
@t
þr % / up

!! "
¼ 0; ð2Þ

where / is the particulate phase volume fraction. The global volume
conservation imposes /þ ! ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:
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5 ¼ r % ðrf Þ ' n~f þ !qf~g; ð3Þ
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&up
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4

3

5 ¼ r % ðrpÞ þ n~f þ /qp~g; ð4Þ

where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r % ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1

!
can be written:

n f 1
!
¼ g !

2

K
uf
!

'up
!! "

; ð6Þ

where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to ! and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ !3d2

kCKð1' !Þ2
ð7Þ

A typical value for kCK ( 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:

rf ¼ 'pf I þ sf ¼ 'pf I þ ge rum
!
þðr um

!
ÞT

! "
; ð8Þ

where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and

um
!
¼ !uf

!
þ/ up

!
is the velocity of the mixture.
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ "ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Fig. 1. Sketch of domain definition for the fluid–particle problem.
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
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dimensional case reduces to the classical Coulomb expression:
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2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp " qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.

2.1.3.2. Mixed-fluid model.
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:
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Fig. 1. Sketch of domain definition for the fluid–particle problem.
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and the velocity at the top is also chosen to be unity. This test case
has been extensively studied and a great amount of literature on
visco-plastic flows exists concerning this problem [24,23,12]. We
have chosen the Mitsoulis and Zisis [24] results as reference who
also used a FEM model and a regularisation technique to deal with
the yield stress. In the following simulations we have neglected
inertial effects (i.e. Re = 0). The dimensionless number controlling
the flow is the Bingham number ðBn ¼ s0H=gUÞ where s0 is the
yield stress.

The mesh is composed with 60 $ 1 $ 60 quadratic elements
(H27). The regularisation parameter is fixed to k ¼ 10%4 s%1. This
value is equivalent to the one chosen by Mitsoulis and Zisis [24]
but the regularisation technique is different. Mitsoulis and Zisis
[24] used the Papanastasiou [29] regularisation whereas we have
used the simple regularisation (Cf. 2.3). In the simulations the
Bingham number has been considered in the range [0–20] to vali-
date our model.

Fig. 5 shows the velocity fields in the cavity for various Bingham
number (Bn = 0, 2 and 20). We observe that a rigid region appears
at the bottom of the cavity as the Bingham number is increased.
Also the velocity decreases as well as the vortex intensity.

Fig. 6 shows the yield zone position in the lid-driven cavity for
various Bingham number. We compare our results with the results

from Mitsoulis and Zisis [24]. The position of the yield zone is de-
fined as the position where the material flows (yields) i.e. where
the magnitude of the stress tensor ksk exceeds the yield stress
s0 ðkskP s0Þ. The results obtained are in good agreement with
Mitsoulis and Zisis [24] and validate the implementation of the
Bingham model in our FEM model.

As a conclusion on the two Bingham fluid flow test cases one
can notice that the regularisation technique implemented give sat-
isfactorily accurate results for Bingham number in the range 0–20
for a regularisation parameter k ¼ 10%4s%1. Moreover with this
numerical parameter a third order (optimal) asymptotic conver-
gence rate has been reached for our tri-quadratic finite element
approximation.

3.2. Two-phase simulation of bed-load transport in 2D

In this subsection we present results on the flow of a Newtonian
fluid over a granular bed. The aim of this subsection is first to val-
idate quantitatively the two formulations of the two-phase flow
model by comparison with the analytical solution of Ouriemi
et al. [26] for the bed-load transport in laminar shearing flows
and secondly to assess computational efficiency of the numerical
model associated with both formulations.

The sketch of the problem and boundary conditions are given in
Fig. 7. The lower half of the domain is filled with particles at
/ ¼ 0:55 immersed in a fluid and the upper part is filled with pure
fluid ð/ ¼ 0Þ. Therefore in this problem the values of the dimen-
sionless numbers are: Re ¼ 2$ 10%2; Ga ¼ 11; Rq ¼ 0:4 and
d=H ¼ 30. There are several choice for the definition of the Bing-
ham number in the bed-load problem. Actually, in dense granular
media the yield stress varies with the normal stress. Therefore one
has to choose a pertinent value of the yield stress. Here we choose
the yield stress corresponding to the first granular layer, this choice
is natural since the relevant length scale for the estimation of the
yield stress is the height of the moving granular bed that is of
the order of few grain diameters. Assuming a hydrostatic pressure
for the granular phase, it reads:

s0 ¼ lsDqgd;

Table 1
Mesh definition and CPU time per iteration.

Mesh definition (NX $ NY $ NZ) 3 $ 1 $ 10 6 $ 1 $ 20 12 $ 1 $ 40 24 $ 1 $ 80 48 $ 1 $ 160

Degrees of freedom 1323 4797 18,225 71,001 280,233
CPU time (s/it. on 8 proc.) 0.67 1.88 6.98 27.79 116.74

Fig. 4. Sketch of the lid-driven cavity.

Fig. 5. Velocity vector fields – Bingham varying from 0 to 20.
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solution the spatial convergence is of order one. Two hypotheses
could explain the first order convergence, the presence of a pre-

dominant Darcy term in the momentum equations and the regu-
larisation technique applied to the particulate phase rheology.
Moreover one can observe that the error on the particulate phase
velocity is greater than the fluid one. Therefore the difference
could be attributed to the regularisation technique that can be re-
duced using a smaller regularisation parameter k. For the mixed-
fluid model solution a third order spatial convergence is reached
for the coarsest meshes where the discretisation error dominates.
On the other hand for finer meshes the order of convergence re-
duces and tends to a first order one in the region where it is dom-
inated by the modelling error introduced by the regularisation
technique. One can also notice that the RMS error is one order
of magnitude greater than for the two-fluid model solution for
the same regularisation parameter as in the two-fluid model.
Reducing the regularisation parameter k by one order of magni-
tude for the mixed-fluid model reduces the error accordingly
(see Fig. 9). Therefore the same accuracy as the two-fluid model
is recovered but with a tenfold CPU time reduction for the
mixed-fluid model compared with the former formulation (see
Table 2). We point out that the CPU time for the mixed-fluid
model with a regularisation parameter k ¼ 10"7 is only 20% high-
er than the one with k ¼ 10"6 whereas the error is reduced by
one order of magnitude. More surprisingly, it takes the same
CPU time for two uniformly refined meshes for a comparable
accuracy solution (see Table 2). Indeed the iteration count for
the finest mesh is five times less than for the coarser meanwhile
the CPU time per iteration is five times higher.

Fig. 7. Sketch of the flow of a Newtonian fluid over a granular bed.

Fig. 8. Comparison of the longitudinal velocity profiles for the flow of a Newtonian fluid over a granular bed between two infinite parallel planes obtained by numerical
simulations (two-fluid model) with the analytical solution of Ouriemi et al. [26].

Fig. 9. RMS error against analytical solution for the flow of a Newtonian fluid over a
moving granular bed between two infinite parallel planes: ep and ef stands for the
particulate phase and the fluid phase error respectively for the two-fluid model
whereas em designates the mixture velocity error for the mixed-fluid model. The
value in brackets is the value of the regularisation parameter k. The RMS error is

defined as: e ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðUi " Uana

i Þ
2

q
where N is the number of nodes in the mesh.
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Consequently the two-fluid model is much more expensive (ten
times in CPU time) than the mixed-fluid one for a comparable
accuracy provided one takes a regularisation parameter sufficiently
small (one order of magnitude smaller than in the two-fluid mod-
el). But one should keep in mind that the mixed-fluid model is
based on the strong assumption of zero relative velocity between

the fluid and particulate phases, which could be restrictive in ac-
tual problems.

It turns out from the results obtained in this section that the
modelling error associated with the implemented regularisation
technique is connected to the regularisation parameter value k.
Therefore in order to achieve computations with controlled accu-
racy we suggest to link the value of the regularisation parameter
to the Bingham number according to the following empirical rela-
tionship: k ¼ min 10"4; 10"4

Bn

! "
.

4. Two-phase simulation of bed-load transport in 3D
configuration

We have shown in the last section the convergence of the two-
phase numerical model compared with analytical solution for a
two-dimensional configuration. We now apply the model to
three-dimensional configurations: a square and a circular cross-
section ducts. As in the previous test case the values of the dimen-

Table 2
CPU time and number of iterations.

Mesh definition NX # NY # NZ 12 # 1 # 80 24 # 1 # 160

Two-fluid model DOFa 54450 212562
k ¼ 10"6 Niterb 1943 206

CPU time (s) 5682 5476

Mixed-fluid model DOF 36225 141561
k ¼ 10"6 Niter 269 54

CPU time (s) 438 473

k ¼ 10"7 Niter 253 75
CPU time (s) 453 589

a DOF: degrees of freedom.
b Niter: number of iterations.

Fig. 11. Mesh sensitivity of the velocity profiles obtained by numerical simulations with the mixed-fluid model for the square cross-section duct (6 # 20 # 40 and
6 # 40 # 80).

Fig. 10. Velocity profile obtained by numerical simulations with the mixed-fluid
model for the square cross-section duct (6 # 20 # 40).

Fig. 12. Velocity profile obtained by numerical simulations with the two-fluid
model for the square cross-section duct (6 # 20 # 40). The fluid phase velocity is in
blue and the particulate phase velocity is in red. An offset of 10"3 has been added to
the velocity of the particulate phase (up) to make it visible. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Continuum approach

constraints exerted by the fluid 
constraints exerted by the particules 

Quelle forme du modele a deux fluides est la plus

appropriee pour decrire les suspensions ?

Daniel Lhuillier

December 11, 2013

On part des bilans de quantite de mouvement d’une suspension de particules
(indice p) dans un fluide porteur (indice f) sous la forme generale

φρp
dpup

dt
+∇ · (φρp < u′

p ⊗ u′

p >) = ∇ · σpp + Fpf − φ∇pf + φρpg (1)

(1 − φ)ρf
dfuf

dt
+∇ · ((1 − φ)ρf < u′

f ⊗ u′

f >) = ∇ · τf − Fpf

−(1− φ)∇pf + (1− φ)ρfg (2)

Dans ces equations les contraintes σpp sont liees aux forces directes Fpp entres
les particules (comme les forces colloidales, les forces de collision ou les forces
de contact) et sa definition generale est

σpp = n <
Rpp

2
⊗ Fpp > (3)

avecRpp le vecteur joignant les centres de deux particules, n le nombre moyen de
particules par unite de volume, et < · · · > une moyenne sur toutes les particules.
Dans ces equations on a extrait le role de la pression moyenne du fluide pf de
sorte que les definitions de la force inter-phase Fpf et de la contrainte τf sont

Fpf = n <

∮
(σf0 + pfI) · nds > (4)

τf = 2ηfE + n <

∮
r⊗ (σf0 + pfI) · ndS (5)

Dans ces definitions les integrales se font sur la surface d’une particule, σf0 ·ndS
represente la force locale (non moyennee) exercee par le fluide sur un element
de surface d’une particule et r le vecteur joignant le centre d’une particule a
un point de sa surface. La viscosite du fluide est ηf et E represente le taux de
deformation moyen de la suspension.

On note que σf0 + pfI = (pf − p0f )I + 2ηfef0 avec p0f et ef0 les valeurs lo-
cales et instantanees (non-moyennees) de la pression et du taux de deformation
du fluide. La fluctuation de pression pf −p0f depend pour partie de phenomenes
lies a la densite ρf du fluide et pour partie a sa viscosite ηf . On est donc amene a
partager la force Fpf et la contraintes τf en parties inertielles (liees par exemple
a la turbulence et (ou) a la masse ajoutee) et visqueuses

Fpf = F+ Fv , τf = τ + τv . (6)
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2.1. Governing equations

Fluid phase hydrodynamics [5]
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Sediment phase hydrodynamics [5]
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Interphase forces [12,37]
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Turbulence closure [14,33]
In a general two-phase flow approach, especially when particle

concentration is large, the effect of particles on carrier fluid flow
and turbulence must be considered. In addition, the velocity field
affects the concentration field; therefore, the velocity profile
should be calculated carefully. We use the two-equation turbu-
lence model that has been developed for predicting two-phase
flows by Elghobashi and Abou-Arab [14] as follows:
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Closure of particle stresses [3,11]
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Air–water interface location [18]
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where U
!
) ðUx;UzÞ and V

!
) ðVx;VzÞ are the fluid and sediment

velocity vectors, respectively; U
!

U
!

is the velocity tensorial product;
x and z are the coordinates in the horizontal and vertical direction,
respectively; T

!
s is the sediment phase stress tensor accounting for

intergranular stress and Reynolds stresses of the sediment veloci-
ties; T

!
f is the fluid-phase stress tensor containing fluid viscous

stress and fluid Reynolds stresses; C is the sediment phase volume
concentration; Cm is the maximum static sediment concentration; P
is the pressure; Pr is the production of turbulent energy due to shear
stress;~g is the gravitational acceleration;~k is the unit vector in the z
direction; qf and qs are the fluid and sediment densities, respec-

tively; ~f in represents the hydrodynamic interphase forces contain-
ing resistance (drag) and lift forces; d is the particle diameter
(here the sediment grains are assumed to be equal-sized, identical
spheres); CD and CL are the drag and lift coefficients, respectively;
u is the internal friction angle of sediment; m is the kinematic vis-
cosity; mt is the eddy viscosity; F is the fluid volume per numerical
cell volume; Txz and Tzz are the horizontal and vertical intergranular
stresses, respectively; r ) ð@=@x; @=@zÞ is gradient operator and DðÞ

Dt
is the material derivative.

2.2. Initial and boundary conditions

The initial conditions for the turbulence field follow the numer-
ical experiments of Lin and Liu [30]. At the air–water interface, the
fluid turbulence has zero vertical fluxes of k and e. Near the bed,
the boundary conditions for k and e are defined according to the
turbulent boundary layer theory taking account of the influence
of the moving sediments on the fluid phase with the log-law veloc-
ity profile applied at the bottom [33]. At the bottom boundary, the
no-slip condition applies for both the fluid and sediment velocities.
The sediment concentration at this boundary was taken as the
maximum concentration ðCm ¼ 0:65Þ. At the top boundary, a
zero-flux sediment concentration condition was applied:

C V
!
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The initial sediment concentration profile for suspended sediment
transport under the waves was [40]:

Cðx; z; 0Þ ¼ Cm exp
"z
l

$ %
; ð15Þ

where l is the vertical length scale that is roughly equal to the ripple
height for rippled beds [40] and for sheet flow conditions it is gen-
erally of the order 30d. The generating-absorbing boundary condi-
tion introduced by Petit et al. [44] was implemented at the
entering boundaries for incident wave generation and absorbing
the reflected waves [5].

2.3. Numerical scheme

The governing equations, including the two-dimensional NS
equations for fluid and sediment phases, VOF change function
and k—e equations, were discretized using finite-difference meth-
ods. A staggered grid was used for the calculation domain. Scalar
variables were calculated in the center of numerical cells and the
vector components were calculated from the staggered grid. The
Cartesian coordinate system was used with the x-axis in the
cross-shore direction and z-axis normal to the horizontal direction.
The calculations started from the still water condition and the time
step was determined by iteration until the computational stability
[4,5] was achieved.

3. Numerical experiments and discussion

The model was used for simulating the behavior of wave-driven
sediment transport in the nearshore zone. A series of numerical
experiments were performed for a number of beach slopes under
a range of incident wave conditions. Different surf zone hydrody-
namic conditions including spilling and plunging breakers were
simulated. The results are discussed and compared with respect
to the physical nature of surf and swash zones. In this section,
the velocity field, wave characteristics, spatial and temporal distri-
butions of sediment transport and turbulent energy are considered.
Furthermore, the simulated flow and magnitude and direction of
sediment transport in the nearshore zone for different dissipative
nature of beaches during uprush and backwash are presented.
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stress;~g is the gravitational acceleration;~k is the unit vector in the z
direction; qf and qs are the fluid and sediment densities, respec-

tively; ~f in represents the hydrodynamic interphase forces contain-
ing resistance (drag) and lift forces; d is the particle diameter
(here the sediment grains are assumed to be equal-sized, identical
spheres); CD and CL are the drag and lift coefficients, respectively;
u is the internal friction angle of sediment; m is the kinematic vis-
cosity; mt is the eddy viscosity; F is the fluid volume per numerical
cell volume; Txz and Tzz are the horizontal and vertical intergranular
stresses, respectively; r ) ð@=@x; @=@zÞ is gradient operator and DðÞ

Dt
is the material derivative.

2.2. Initial and boundary conditions

The initial conditions for the turbulence field follow the numer-
ical experiments of Lin and Liu [30]. At the air–water interface, the
fluid turbulence has zero vertical fluxes of k and e. Near the bed,
the boundary conditions for k and e are defined according to the
turbulent boundary layer theory taking account of the influence
of the moving sediments on the fluid phase with the log-law veloc-
ity profile applied at the bottom [33]. At the bottom boundary, the
no-slip condition applies for both the fluid and sediment velocities.
The sediment concentration at this boundary was taken as the
maximum concentration ðCm ¼ 0:65Þ. At the top boundary, a
zero-flux sediment concentration condition was applied:

C V
!
%~k" mtrC %~k ¼ 0; ð14Þ

The initial sediment concentration profile for suspended sediment
transport under the waves was [40]:

Cðx; z; 0Þ ¼ Cm exp
"z
l

$ %
; ð15Þ

where l is the vertical length scale that is roughly equal to the ripple
height for rippled beds [40] and for sheet flow conditions it is gen-
erally of the order 30d. The generating-absorbing boundary condi-
tion introduced by Petit et al. [44] was implemented at the
entering boundaries for incident wave generation and absorbing
the reflected waves [5].

2.3. Numerical scheme

The governing equations, including the two-dimensional NS
equations for fluid and sediment phases, VOF change function
and k—e equations, were discretized using finite-difference meth-
ods. A staggered grid was used for the calculation domain. Scalar
variables were calculated in the center of numerical cells and the
vector components were calculated from the staggered grid. The
Cartesian coordinate system was used with the x-axis in the
cross-shore direction and z-axis normal to the horizontal direction.
The calculations started from the still water condition and the time
step was determined by iteration until the computational stability
[4,5] was achieved.

3. Numerical experiments and discussion

The model was used for simulating the behavior of wave-driven
sediment transport in the nearshore zone. A series of numerical
experiments were performed for a number of beach slopes under
a range of incident wave conditions. Different surf zone hydrody-
namic conditions including spilling and plunging breakers were
simulated. The results are discussed and compared with respect
to the physical nature of surf and swash zones. In this section,
the velocity field, wave characteristics, spatial and temporal distri-
butions of sediment transport and turbulent energy are considered.
Furthermore, the simulated flow and magnitude and direction of
sediment transport in the nearshore zone for different dissipative
nature of beaches during uprush and backwash are presented.
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2.1. Governing equations

Bakhtyar et al. [3] developed a two-dimensional model for the
simulation of wave breaking, turbulence and wave characteristics
in the surf and swash zones. The model is based on the Rey-
nolds-Averaged Navier–Stokes (RANS) equations, Volume-Of-Fluid
technique and a k—e turbulence model enabling the investigation
and analysis of breaking, overturning, uprush and backwash of
waves on a beach slope. The simulations reported by Bakhtyar
et al. [3] highlight its ability to improve understanding of the de-
tails of nearshore processes. Here we extend the previous model
to two phases to simulate sediment transport where both clear
water and sheet flow are present.

The governing equations are the two-dimensional equations of
momentum and continuity, together with the equations for Turbu-
lent Kinetic Energy (TKE) k and Turbulence Dissipation Rate (TDR) e:

Fluid phase continuity equation:
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Sediment phase continuity equation:
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Sediment phase momentum equations:
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where ðUx;UzÞ and ðVx;VzÞ are the fluid and sediment velocities,
respectively; Tij is the intergranular stress tensor; C is the sediment
phase volume concentration; P is the pressure; g is the magnitude
of gravitational acceleration; qf and qs are the fluid and sediment
densities, respectively; U0; V 0 and C0 are the fluctuating components
of the fluid velocity components and sediment concentration;
C ¼ mt þ m; mt is the eddy viscosity, m is the kinematic viscosity
and the overbar indicates a time-averaged quantity. Eqs. (1)–(6)
consider the two-dimensional fluid and sediment flows in the ver-

tical and horizontal directions, instead of the vertical flow models
used previously [23,26]. The hydrodynamic force ðfdÞ exerted on
the particulate phase is [9]:

fdx ¼
3
4

Cqf

d50
CDðUx " VxÞ
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where d50 is the average particle diameter, and CD and CL are the
drag and lift coefficients, respectively. The forces in Eq. (8) respec-
tively represent the interphase drag and lift forces. The origin of
the drag force is the resistance experienced by a grain moving in
the liquid. The drag force is due to the relative mean velocity be-
tween fluid and sediment phases. The drag coefficient takes into
account the character of the flow around the sediments. The lift
force considers the interaction of the grains with the shear field
of the fluid. Lift forces on sediment are due to particle rotation.
This rotation may be caused by a velocity gradient or may be im-
posed from some other source such as particle contact and re-
bound from a bed. It acts perpendicularly to the main flow
direction and is proportional to the gradient of the fluid velocity
field. The drag and lift forces are highly dependent upon the Rey-
nolds number. Moreover, these forces are dependent on the shape
of the grain; however, in this study the grains are assumed to be
solid, spherical particles with a constant density, for which the
drag and lift coefficients are [9,30]:
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2.2. Turbulence closure model

One of the solutions to the analysis of the NS equations and the
closure problem is the use of Boussinesq’s eddy viscosity. The
eddy viscosity is a characteristic defined by the local conditions
of turbulence and hence is variable with time and location. The
linear eddy viscosity model considers the relation between the
Reynolds stresses and the rate of flow shape change as follows
[28]:

U0iU
0
j ¼ "mtðUi;j þ Uj;iÞ þ

2
3

dijk"
2
3
mtdijUj;i;

C0U0i ¼ C 0V 0i ¼ "mt
@C
@z
; ð10Þ

where k ¼ 1
2 UiUi is the TKE and dij is the Kronecker delta. The eddy

viscosity, mt , is defined by:

mt ¼ Cd
k2

e ; ð11Þ

here, Cd ¼ 0:09 is an empirical constant [41]. In order to acquire an
approximation of local turbulence conditions and related parame-
ters, the equations governing the turbulence transformation param-
eters k and e are solved. In a general two-phase flow approach,
especially when the particle concentration is large, the effect of par-
ticles on carrier fluid flow and turbulence must be considered. Also,
the velocity field affects the concentration field; therefore, the
velocity profile should be calculated carefully. We use the two-
equation turbulence model that has been developed for predicting
two-phase flows by Elghobashi and Abou-Arab [11]. The transfor-
mation equations for k and e are, respectively:
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Bakhtyar et al. [3] developed a two-dimensional model for the
simulation of wave breaking, turbulence and wave characteristics
in the surf and swash zones. The model is based on the Rey-
nolds-Averaged Navier–Stokes (RANS) equations, Volume-Of-Fluid
technique and a k—e turbulence model enabling the investigation
and analysis of breaking, overturning, uprush and backwash of
waves on a beach slope. The simulations reported by Bakhtyar
et al. [3] highlight its ability to improve understanding of the de-
tails of nearshore processes. Here we extend the previous model
to two phases to simulate sediment transport where both clear
water and sheet flow are present.

The governing equations are the two-dimensional equations of
momentum and continuity, together with the equations for Turbu-
lent Kinetic Energy (TKE) k and Turbulence Dissipation Rate (TDR) e:
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Sediment phase momentum equations:
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where ðUx;UzÞ and ðVx;VzÞ are the fluid and sediment velocities,
respectively; Tij is the intergranular stress tensor; C is the sediment
phase volume concentration; P is the pressure; g is the magnitude
of gravitational acceleration; qf and qs are the fluid and sediment
densities, respectively; U0; V 0 and C0 are the fluctuating components
of the fluid velocity components and sediment concentration;
C ¼ mt þ m; mt is the eddy viscosity, m is the kinematic viscosity
and the overbar indicates a time-averaged quantity. Eqs. (1)–(6)
consider the two-dimensional fluid and sediment flows in the ver-

tical and horizontal directions, instead of the vertical flow models
used previously [23,26]. The hydrodynamic force ðfdÞ exerted on
the particulate phase is [9]:
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where d50 is the average particle diameter, and CD and CL are the
drag and lift coefficients, respectively. The forces in Eq. (8) respec-
tively represent the interphase drag and lift forces. The origin of
the drag force is the resistance experienced by a grain moving in
the liquid. The drag force is due to the relative mean velocity be-
tween fluid and sediment phases. The drag coefficient takes into
account the character of the flow around the sediments. The lift
force considers the interaction of the grains with the shear field
of the fluid. Lift forces on sediment are due to particle rotation.
This rotation may be caused by a velocity gradient or may be im-
posed from some other source such as particle contact and re-
bound from a bed. It acts perpendicularly to the main flow
direction and is proportional to the gradient of the fluid velocity
field. The drag and lift forces are highly dependent upon the Rey-
nolds number. Moreover, these forces are dependent on the shape
of the grain; however, in this study the grains are assumed to be
solid, spherical particles with a constant density, for which the
drag and lift coefficients are [9,30]:
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2.2. Turbulence closure model

One of the solutions to the analysis of the NS equations and the
closure problem is the use of Boussinesq’s eddy viscosity. The
eddy viscosity is a characteristic defined by the local conditions
of turbulence and hence is variable with time and location. The
linear eddy viscosity model considers the relation between the
Reynolds stresses and the rate of flow shape change as follows
[28]:
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where k ¼ 1
2 UiUi is the TKE and dij is the Kronecker delta. The eddy

viscosity, mt , is defined by:

mt ¼ Cd
k2
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here, Cd ¼ 0:09 is an empirical constant [41]. In order to acquire an
approximation of local turbulence conditions and related parame-
ters, the equations governing the turbulence transformation param-
eters k and e are solved. In a general two-phase flow approach,
especially when the particle concentration is large, the effect of par-
ticles on carrier fluid flow and turbulence must be considered. Also,
the velocity field affects the concentration field; therefore, the
velocity profile should be calculated carefully. We use the two-
equation turbulence model that has been developed for predicting
two-phase flows by Elghobashi and Abou-Arab [11]. The transfor-
mation equations for k and e are, respectively:
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Fluid phase hydrodynamics [5]
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Turbulence closure [14,33]
In a general two-phase flow approach, especially when particle

concentration is large, the effect of particles on carrier fluid flow
and turbulence must be considered. In addition, the velocity field
affects the concentration field; therefore, the velocity profile
should be calculated carefully. We use the two-equation turbu-
lence model that has been developed for predicting two-phase
flows by Elghobashi and Abou-Arab [14] as follows:
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Closure of particle stresses [3,11]

Txz ¼
6mqf

5½ðCm=CÞ
1
3 " 1'2

@Vx

@z
; ð11Þ

Tzz ¼
Txz

tan u ; ð12Þ

Air–water interface location [18]

@F
@t
þ U
!
%rF ¼ 0; ð13Þ

where U
!
) ðUx;UzÞ and V
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velocity vectors, respectively; U
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is the velocity tensorial product;
x and z are the coordinates in the horizontal and vertical direction,
respectively; T

!
s is the sediment phase stress tensor accounting for

intergranular stress and Reynolds stresses of the sediment veloci-
ties; T

!
f is the fluid-phase stress tensor containing fluid viscous

stress and fluid Reynolds stresses; C is the sediment phase volume
concentration; Cm is the maximum static sediment concentration; P
is the pressure; Pr is the production of turbulent energy due to shear
stress;~g is the gravitational acceleration;~k is the unit vector in the z
direction; qf and qs are the fluid and sediment densities, respec-

tively; ~f in represents the hydrodynamic interphase forces contain-
ing resistance (drag) and lift forces; d is the particle diameter
(here the sediment grains are assumed to be equal-sized, identical
spheres); CD and CL are the drag and lift coefficients, respectively;
u is the internal friction angle of sediment; m is the kinematic vis-
cosity; mt is the eddy viscosity; F is the fluid volume per numerical
cell volume; Txz and Tzz are the horizontal and vertical intergranular
stresses, respectively; r ) ð@=@x; @=@zÞ is gradient operator and DðÞ

Dt
is the material derivative.

2.2. Initial and boundary conditions

The initial conditions for the turbulence field follow the numer-
ical experiments of Lin and Liu [30]. At the air–water interface, the
fluid turbulence has zero vertical fluxes of k and e. Near the bed,
the boundary conditions for k and e are defined according to the
turbulent boundary layer theory taking account of the influence
of the moving sediments on the fluid phase with the log-law veloc-
ity profile applied at the bottom [33]. At the bottom boundary, the
no-slip condition applies for both the fluid and sediment velocities.
The sediment concentration at this boundary was taken as the
maximum concentration ðCm ¼ 0:65Þ. At the top boundary, a
zero-flux sediment concentration condition was applied:
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The initial sediment concentration profile for suspended sediment
transport under the waves was [40]:

Cðx; z; 0Þ ¼ Cm exp
"z
l
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; ð15Þ

where l is the vertical length scale that is roughly equal to the ripple
height for rippled beds [40] and for sheet flow conditions it is gen-
erally of the order 30d. The generating-absorbing boundary condi-
tion introduced by Petit et al. [44] was implemented at the
entering boundaries for incident wave generation and absorbing
the reflected waves [5].

2.3. Numerical scheme

The governing equations, including the two-dimensional NS
equations for fluid and sediment phases, VOF change function
and k—e equations, were discretized using finite-difference meth-
ods. A staggered grid was used for the calculation domain. Scalar
variables were calculated in the center of numerical cells and the
vector components were calculated from the staggered grid. The
Cartesian coordinate system was used with the x-axis in the
cross-shore direction and z-axis normal to the horizontal direction.
The calculations started from the still water condition and the time
step was determined by iteration until the computational stability
[4,5] was achieved.

3. Numerical experiments and discussion

The model was used for simulating the behavior of wave-driven
sediment transport in the nearshore zone. A series of numerical
experiments were performed for a number of beach slopes under
a range of incident wave conditions. Different surf zone hydrody-
namic conditions including spilling and plunging breakers were
simulated. The results are discussed and compared with respect
to the physical nature of surf and swash zones. In this section,
the velocity field, wave characteristics, spatial and temporal distri-
butions of sediment transport and turbulent energy are considered.
Furthermore, the simulated flow and magnitude and direction of
sediment transport in the nearshore zone for different dissipative
nature of beaches during uprush and backwash are presented.
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Turbulence closure [14,33]
In a general two-phase flow approach, especially when particle

concentration is large, the effect of particles on carrier fluid flow
and turbulence must be considered. In addition, the velocity field
affects the concentration field; therefore, the velocity profile
should be calculated carefully. We use the two-equation turbu-
lence model that has been developed for predicting two-phase
flows by Elghobashi and Abou-Arab [14] as follows:
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Closure of particle stresses [3,11]
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Air–water interface location [18]

@F
@t
þ U
!
%rF ¼ 0; ð13Þ

where U
!
) ðUx;UzÞ and V

!
) ðVx;VzÞ are the fluid and sediment

velocity vectors, respectively; U
!

U
!

is the velocity tensorial product;
x and z are the coordinates in the horizontal and vertical direction,
respectively; T

!
s is the sediment phase stress tensor accounting for

intergranular stress and Reynolds stresses of the sediment veloci-
ties; T

!
f is the fluid-phase stress tensor containing fluid viscous

stress and fluid Reynolds stresses; C is the sediment phase volume
concentration; Cm is the maximum static sediment concentration; P
is the pressure; Pr is the production of turbulent energy due to shear
stress;~g is the gravitational acceleration;~k is the unit vector in the z
direction; qf and qs are the fluid and sediment densities, respec-

tively; ~f in represents the hydrodynamic interphase forces contain-
ing resistance (drag) and lift forces; d is the particle diameter
(here the sediment grains are assumed to be equal-sized, identical
spheres); CD and CL are the drag and lift coefficients, respectively;
u is the internal friction angle of sediment; m is the kinematic vis-
cosity; mt is the eddy viscosity; F is the fluid volume per numerical
cell volume; Txz and Tzz are the horizontal and vertical intergranular
stresses, respectively; r ) ð@=@x; @=@zÞ is gradient operator and DðÞ

Dt
is the material derivative.

2.2. Initial and boundary conditions

The initial conditions for the turbulence field follow the numer-
ical experiments of Lin and Liu [30]. At the air–water interface, the
fluid turbulence has zero vertical fluxes of k and e. Near the bed,
the boundary conditions for k and e are defined according to the
turbulent boundary layer theory taking account of the influence
of the moving sediments on the fluid phase with the log-law veloc-
ity profile applied at the bottom [33]. At the bottom boundary, the
no-slip condition applies for both the fluid and sediment velocities.
The sediment concentration at this boundary was taken as the
maximum concentration ðCm ¼ 0:65Þ. At the top boundary, a
zero-flux sediment concentration condition was applied:

C V
!
%~k" mtrC %~k ¼ 0; ð14Þ

The initial sediment concentration profile for suspended sediment
transport under the waves was [40]:

Cðx; z; 0Þ ¼ Cm exp
"z
l

$ %
; ð15Þ

where l is the vertical length scale that is roughly equal to the ripple
height for rippled beds [40] and for sheet flow conditions it is gen-
erally of the order 30d. The generating-absorbing boundary condi-
tion introduced by Petit et al. [44] was implemented at the
entering boundaries for incident wave generation and absorbing
the reflected waves [5].

2.3. Numerical scheme

The governing equations, including the two-dimensional NS
equations for fluid and sediment phases, VOF change function
and k—e equations, were discretized using finite-difference meth-
ods. A staggered grid was used for the calculation domain. Scalar
variables were calculated in the center of numerical cells and the
vector components were calculated from the staggered grid. The
Cartesian coordinate system was used with the x-axis in the
cross-shore direction and z-axis normal to the horizontal direction.
The calculations started from the still water condition and the time
step was determined by iteration until the computational stability
[4,5] was achieved.

3. Numerical experiments and discussion

The model was used for simulating the behavior of wave-driven
sediment transport in the nearshore zone. A series of numerical
experiments were performed for a number of beach slopes under
a range of incident wave conditions. Different surf zone hydrody-
namic conditions including spilling and plunging breakers were
simulated. The results are discussed and compared with respect
to the physical nature of surf and swash zones. In this section,
the velocity field, wave characteristics, spatial and temporal distri-
butions of sediment transport and turbulent energy are considered.
Furthermore, the simulated flow and magnitude and direction of
sediment transport in the nearshore zone for different dissipative
nature of beaches during uprush and backwash are presented.
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where Dð Þ
Dt is the material derivative; U and V are the fluid and sed-

iment vector velocities, respectively. Eqs. (12)–(15) represent the

two-equation turbulent closure ðk—eÞ in the sheet flow layer, in-
stead of more simplified turbulent closures used previously.

2.3. Collisional stresses for the sediment phase

The stresses generated by particle collisions have significant ef-
fects on the velocities of both phases. Particle stress can be mod-
eled based on Bagnold-type closure [2], or kinetic theory of
granular flow [17]. Bagnold [2] observed that the total shear stress
in sheet flow is the sum of the shear stress attributed to the fluid
and that developed by particle interaction. Savage and McKewon
[42] provided an improvement to Bagnold’s formula based on their
experiments:

Txz ¼ 1:2k2mqf
@Vx

@z
; k ¼ ðCm=CÞ

1
3 # 1

h i#1
; ð16Þ

where Cm is the maximum static sediment concentration and k is
the linear sediment concentration. This equation has been shown
to be effective by numerous researchers [1,9]. The normal inter-
granular stress is related to the tangential stress by:

Tzz ¼ Txz cotð/Þ; ð17Þ

in which / is the static angle of repose. For moving grains near the
maximum concentration as occurs for sheet flow conditions, the dy-
namic angle of repose is of similar magnitude to static angle of re-
pose [32].

Table 2
Basic characteristics (wave conditions and the characteristics of bed material) of the
experiment under symmetric sheet flow ([15]; case 1–1).

Material d50 (cm) qs=q T (s) Maximum orbital velocity (cm s#1)

Sand 0.02 2.66 3.6 127

Fig. 1. Vertical distribution of the sediment concentration profile. The solid symbols are the experimental data [15] and the solid lines are the numerical results. The panels
show sediment concentration (h is the phase of oscillatory flow) at (a) h ¼ 0'; (b) h ¼ 30'; (c) h ¼ 60'; (d) h ¼ 90'; (e) h ¼ 120'; (f) h ¼ 150' through one wave half-cycle. The
initial sand level is set at z ¼ 0.
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2.4. Turbulence field boundary conditions

We assume that turbulence does not diffuse across the free sur-
face. Therefore, the normal flux of k and e vanishes there. The
boundary conditions for k and e on the seabed are specified in a
turbulent boundary layer taking account of the influence of the
sediments on the fluid phase. The local state of turbulence is ex-
pressed by use of logarithmic laws. Hence e and k at the first grid
adjacent to the bottom boundary can be expressed by [5,28]:

e ¼ u3
" ð1$ RiÞðjzÞ$1; ð18Þ

k ¼ 2:025u2
" 0:19þ 0:06$ 0:48Ri

1$ Ri
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! "$2

; ð20Þ

where u" is the frictional velocity; Ri is the Richardson number and
j ¼ 0:41 is the von Kármán constant.

2.5. Fluid and sediment initial and boundary conditions

The initial conditions are zero velocity for both fluid and sedi-
ment with a hydrostatic pressure distribution. In the model both
fluid and sediment velocity components are considered zero at

the bottom (no-slip boundary condition), with periodic boundary
conditions at the lateral boundaries. The sediment concentration
at the bottom boundary is taken as the maximum concentration.
(If n is the porosity, then sediment concentration ðCÞ is ð1$ nÞ.
The maximum sediment concentration Cm used in the present sim-
ulation is set to be 0.6 according to O’Donoghue and Wright [34].)
To conserve the sediment mass, a zero flux condition is used for the
sediment concentration calculation at the top boundary as follows:

VzC $ mt
@C
@z
¼ 0: ð21Þ

At the inlet boundary, the generating-absorbing boundary con-
dition for the NS equation model developed by Petit et al. [37] is
applied. Petit et al. [37] used the weakly reflective boundary condi-
tion for generating the incident waves as well as absorbing the re-
flected waves as follows:

@Rr

@t
$ Cr

@Rr

@x
¼ 0; ð22Þ

Rr ¼ Rt $ Rin; ð23Þ

where Rr; Rt and Rin are the variables associated with the reflected,
computed and the theoretical wave values represents velocity, pres-
sure and free surface displacement. Detailed formulations of wave
generation and boundary conditions have been discussed by
Bakhtyar et al. [3].

Fig. 2. Vertical distribution of the sediment flux. The solid symbols are the experimental data [15] and the solid lines are the numerical results. The panels show sediment
concentration (h is the phase of oscillatory flow) at (a) h ¼ 0'; (b) h ¼ 30'; (c) h ¼ 60'; (d) h ¼ 90'; (e) h ¼ 120'; (f) h ¼ 150' through one wave half-cycle. The initial sand level
is set at z ¼ 0.
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2.1. Governing equations

Fluid phase hydrodynamics [5]
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Sediment phase hydrodynamics [5]
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Turbulence closure [14,33]
In a general two-phase flow approach, especially when particle

concentration is large, the effect of particles on carrier fluid flow
and turbulence must be considered. In addition, the velocity field
affects the concentration field; therefore, the velocity profile
should be calculated carefully. We use the two-equation turbu-
lence model that has been developed for predicting two-phase
flows by Elghobashi and Abou-Arab [14] as follows:
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where U
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) ðUx;UzÞ and V

!
) ðVx;VzÞ are the fluid and sediment

velocity vectors, respectively; U
!

U
!

is the velocity tensorial product;
x and z are the coordinates in the horizontal and vertical direction,
respectively; T

!
s is the sediment phase stress tensor accounting for

intergranular stress and Reynolds stresses of the sediment veloci-
ties; T

!
f is the fluid-phase stress tensor containing fluid viscous

stress and fluid Reynolds stresses; C is the sediment phase volume
concentration; Cm is the maximum static sediment concentration; P
is the pressure; Pr is the production of turbulent energy due to shear
stress;~g is the gravitational acceleration;~k is the unit vector in the z
direction; qf and qs are the fluid and sediment densities, respec-

tively; ~f in represents the hydrodynamic interphase forces contain-
ing resistance (drag) and lift forces; d is the particle diameter
(here the sediment grains are assumed to be equal-sized, identical
spheres); CD and CL are the drag and lift coefficients, respectively;
u is the internal friction angle of sediment; m is the kinematic vis-
cosity; mt is the eddy viscosity; F is the fluid volume per numerical
cell volume; Txz and Tzz are the horizontal and vertical intergranular
stresses, respectively; r ) ð@=@x; @=@zÞ is gradient operator and DðÞ

Dt
is the material derivative.

2.2. Initial and boundary conditions

The initial conditions for the turbulence field follow the numer-
ical experiments of Lin and Liu [30]. At the air–water interface, the
fluid turbulence has zero vertical fluxes of k and e. Near the bed,
the boundary conditions for k and e are defined according to the
turbulent boundary layer theory taking account of the influence
of the moving sediments on the fluid phase with the log-law veloc-
ity profile applied at the bottom [33]. At the bottom boundary, the
no-slip condition applies for both the fluid and sediment velocities.
The sediment concentration at this boundary was taken as the
maximum concentration ðCm ¼ 0:65Þ. At the top boundary, a
zero-flux sediment concentration condition was applied:

C V
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The initial sediment concentration profile for suspended sediment
transport under the waves was [40]:

Cðx; z; 0Þ ¼ Cm exp
"z
l

$ %
; ð15Þ

where l is the vertical length scale that is roughly equal to the ripple
height for rippled beds [40] and for sheet flow conditions it is gen-
erally of the order 30d. The generating-absorbing boundary condi-
tion introduced by Petit et al. [44] was implemented at the
entering boundaries for incident wave generation and absorbing
the reflected waves [5].

2.3. Numerical scheme

The governing equations, including the two-dimensional NS
equations for fluid and sediment phases, VOF change function
and k—e equations, were discretized using finite-difference meth-
ods. A staggered grid was used for the calculation domain. Scalar
variables were calculated in the center of numerical cells and the
vector components were calculated from the staggered grid. The
Cartesian coordinate system was used with the x-axis in the
cross-shore direction and z-axis normal to the horizontal direction.
The calculations started from the still water condition and the time
step was determined by iteration until the computational stability
[4,5] was achieved.

3. Numerical experiments and discussion

The model was used for simulating the behavior of wave-driven
sediment transport in the nearshore zone. A series of numerical
experiments were performed for a number of beach slopes under
a range of incident wave conditions. Different surf zone hydrody-
namic conditions including spilling and plunging breakers were
simulated. The results are discussed and compared with respect
to the physical nature of surf and swash zones. In this section,
the velocity field, wave characteristics, spatial and temporal distri-
butions of sediment transport and turbulent energy are considered.
Furthermore, the simulated flow and magnitude and direction of
sediment transport in the nearshore zone for different dissipative
nature of beaches during uprush and backwash are presented.

280 R. Bakhtyar et al. / Advances in Water Resources 33 (2010) 277–290



more simple models 
but no shallow water 



Over simplification: 
considering only the fall velocity 

Over simplification: considering only the Stokes velocity 



Vs =
d2

18�
(��)g

free fall equilibrium 

terminal velocity

characteristic flux

Qs =
d3

�
(��)g

4
3
�(��)R3g = 6��RVs

Over simplification: considering only the Stokes velocity 



Si on pense que les forces directes inter-particulaires Fpp ne dependent pas de
l’etat laminaire ou turbulent du fluide, on ne fait pas de decomposition de σpp.
Les bilans de quantite de mouvement se presentent maintenant sous la forme

φρp
dpup

dt
= ∇ · σp + F+ Fv − φ∇pf + φρpg (7)

(1− φ)ρf
dfuf

dt
= ∇ · σf +∇ · τv − F− Fv − (1− φ)∇pf + (1 − φ)ρfg (8)

avec les definitions

σp = σpp − φρp < u′

p ⊗ u′

p > (9)

σf = τ − (1− φ)ρf < u′

f ⊗ u′

f > . (10)

Ce n’est que maintenant que l’on peut completer ce resultat avec la proposition
de Jackson qui consiste a exprimer la force visqueuse sous la forme

Fv = φ∇ · τv + (1 − φ)fv (11)

et obtenir ainsi

φρp
dpup

dt
= ∇ · σp + F+ φ∇ · τv + (1− φ)fv − φ∇pf + φρpg (12)

(1− φ)ρf
dfuf

dt
= ∇ · σf − F+ (1 − φ)∇ · τv − (1− φ)fv

−(1− φ)∇pf + (1− φ)ρfg . (13)

Si on pense que l’on est en droit de negliger toutes les quantites liees a la
turbulence du fluide et a la masse ajoutee (σf et F) on obtient alors les bilans
simplifies

φρp
dpup

dt
= φρf

dfuf

dt
+∇ · σp + fv + φ(ρp − ρf )g (14)

ρf
dfuf

dt
= ∇ · τv − fv −∇pf + ρfg . (15)

Mais si on a des raisons de penser que les fluctuations de vitesse du fluide jouent
un role important alors il faut retablir σf et F et utiliser les bilans (12) et (13)
.
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Mass conservation of the sediments:

local form;
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Figure 1. Schematic diagram of the flow configuration. The analysis is performed in the
fully developed flow region behind the head of a turbidity current in the (x, z)-plane.

between particle-laden and clear fluid. The presence of suspended sediment in the
fluid is characterized by the volume fraction occupied by the particles, denoted as
the concentration field variable c. This concentration is assumed to be sufficiently
small for fluid–particle interactions to occur predominantly through the momentum
equations (2.2)–(2.3), while the effect of particles in the continuity equation (2.1) is
taken to be negligible. The analysis considers small, monodisperse sediment particles
with negligible inertia and a settling velocity ws , whose transport can be modelled
by a convection–diffusion equation (2.4). This approach is appropriate for dilute
turbidity currents in which the bulk of the sediment is transported in suspension
(Necker et al. 2002, 2005), while it would not be adequate for higher density flows
where particle–particle interactions and non-Boussinesq effects become important (as
in debris flows, for instance). The analysis is performed in the streamwise x, z-plane,
as defined in figure 1, some distance behind the head of a sustained turbidity current.
All flow variables are assumed to be independent of the spanwise coordinate y, and
the spanwise velocity component v is taken to be zero. The two-dimensional flow
field is governed by
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The two-dimensional fluid velocity vector has components u and w. Since we aim at a
conceptual investigation of the instability mechanisms involved in deep-sea sediment
wave formation, viscosity and diffusivity are assumed to be constant. Although this
choice may be interpreted as the simplest form of the eddy viscosity in a turbulent
flow, the effects of turbulence in a real turbidity current would not be appropriately
modelled by means of a constant eddy viscosity. However, the precise form of the
turbulent stress tensor is unknown in such a complex flow (variable density, high
particle concentration near an erodible bed, effects of collective behaviour). Stacey &Deep-water sediment wave formation: linear stability analysis of coupled 
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Bowen (1988), for instance, attempted to determine parameters for a variable-viscosity
model in turbidity currents to match experimental data; their study illustrates the
difficulty of formulating a model that may be extrapolated to field-scale flow regimes.
In the light of such uncertainties, we feel that the simplest assumption of constant
eddy viscosity is best suited for an investigation of the salient instability mechanisms.

The monodisperse particles are advected by the fluid, while settling with a constant
velocity ws . The density ρ of the suspension is linearly related to the volume fraction
c of the particles by ρ(x) = ρf [1+γ c(x)], where γ = (ρp −ρf )/ρf is the excess density
ratio based on the fluid density ρf and the particle material density ρp .

2.2. Fluid/bed interface evolution

To analyse the coupled dynamics of the turbidity current and the interface between
the fluid and the sediment bed, a model is required that describes how the interface
location changes with time as a result of sediment deposition and erosion. Towards
this end, the interface position is defined by its elevation z = η(x, t) above the x-axis.
It is assumed that sediment in the turbidity current is predominantly transported as
suspended load, due to high wall shear, whereas the effects of bedload are not accounted
for in the present model. Following Hall et al. (2008), the interface elevation is taken
to evolve according to

∂η

∂t
= ws c(z = η) − β

τn

nz

. (2.5)

Here, β quantifies the rate at which particle volume is eroded per unit area and unit
shear stress, τn denotes the shear stress acting at the surface of the sediment bed,
and nz is the vertical projection of the wall-normal unit vector. Equations (2.1)–(2.5)
comprise the governing equations for the coupled flow/sediment bed dynamics. At
the interface, a no-slip condition is imposed for the horizontal u-velocity component,
while the vertical w-velocity component has to equal the rate at which the interface
advances or recedes,

u(z = η) = 0 , w(z = η) =
∂η

∂t
. (2.6)

The interstitial void fraction in the sediment bed is not taken into account; assuming
no spatial variation in packing, a constant packing ratio would multiply the right-hand
side of the boundary condition for w. The erosive transport of sediment from the bed
into the interior of the fluid is modelled as a diffusive flux (Parker 1978; Blanchette
et al. 2005), expressed as a boundary condition for the wall-normal concentration
gradient,

D
∂c

∂n

∣∣∣∣
z=η

= −βτn. (2.7)

The flow over an unchanging bottom topography will be considered in § 3. In that
case, (2.5) is simply replaced by

∂η

∂t
= 0. (2.8)

2.3. Non-dimensionalisation and choice of parameters

The governing equations are rendered dimensionless with respect to a diffusive length
scale l = D/ws , the outer flow velocity u∞ and the fluid density ρf . The concentration
c already represents a non-dimensional volume fraction, and, in contrast to Hall et al.
(2008), is not renormalized in the present framework.
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If information about the thickness and the grain size distribution in
a turbidite bed can be inferred from data at a few locations (such as
wells), one may attempt to identify initial conditions for a flow
simulation that provides a best fit in these locations between
measured data and numerical predictions of the sediment deposit.
The present paper outlines an approach, demonstrated in the context
of a simple model problem, to perform such an inversion of localized
sample data in an automated process. To this end, an optimization
problem is formulated, which aims at minimizing the discrepancy
between simulation results and reference data. To our knowledge, no
published literature on turbidity current inversion exists to date.

Towards the long-term goal of accurate field-scale turbidity
current inversion based on well data, the objective of the present
study is to introduce a general formulation of the inverse problem, to
propose an optimization strategy for its solution, and to present test
results for the latter as a first proof of concept. The test presented here
is performed under highly simplified, but very controlled conditions.
The two-dimensional lock-exchange problem is chosen as a test case.
The inversion strategy is used in conjunction with a direct numerical
simulation (DNS) approach. The test objective is to reconstruct a
sediment deposit that has initially been generated with the same
simulation code. The performance of the inversion strategy can thus
be assessed independently of any uncertainties associated with the
simulation model or with the accuracy of reference data.

The physical setup of the two-dimensional lock-exchange
problem and the employed numerical simulation technique
are described in Section 2. The inverse problem is introduced
in Section 3. This includes the formulation of an optimization
objective and the motivation for our choice of the surrogate
management framework (SMF) method as a solution strategy.
A full description of the SMF implementation is given in Section 4.
Inversion results for the present test case are presented and
discussed in Section 5, and conclusions are offered in Section 6.

2. Test configuration: two-dimensional lock-exchange
problem

2.1. Physical setup

Widely used in fundamental research, the lock-exchange pro-
blem represents the elementary archetype of a gravity current. The
specific case of lock-exchange turbidity currents, where density

differences in the fluid are due to sediment loading, has been
investigated experimentally by Bonnecaze et al. (1993), amongst
others, and numerically by Necker et al. (2005) and Blanchette et al.
(2005). For the purpose of the present study, this generic config-
uration may serve as a testbed for the proposed inversion approach.

Consider a confined volume of sediment-laden water (the
‘‘lock’’), submerged in a rectangular tank filled with otherwise
clear water. The configuration is sketched in Fig. 1. In an experi-
mental setting, the sediment-laden and the clear water are initially
separated by thin plates, and the water inside the lock is stirred, so
as to maintain a homogeneous distribution of suspended sediment
throughout its volume. At time t¼ 0, the separating plates are
suddenly removed, releasing the heavier suspension into the
lighter clear water. Under the influence of gravity, the density
difference drives a turbidity current along the bottom of the tank.
As the current propagates, its sediment is continuously deposited
onto the bottom wall, until the current ultimately comes to rest.

This process is illustrated in Fig. 2, which displays three snap-
shots of the normalized total sediment concentration from the
numerical simulation of a lock-exchange problem. All flow simula-
tions in this study are restricted to a two-dimensional geometry.
The numerical method and specific parameters used in the flow
configuration of Fig. 2 are described in the following sections.

2.2. Numerical model

The flow is assumed to be governed by the two-dimensional
Navier–Stokes equations. Restricting the analysis to moderate
levels of sediment loading, with resulting density variations not
larger than 5%, these equations may be written in the Boussinesq
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Fig. 1. Lock-exchange configuration, initial condition.
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Fig. 2. Snapshots of the total concentration field ctot from the direct numerical simulation of the reference case. The numerical domain extends further downstream to x¼ 10.
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Figure 3 – Ecoulements gravitaire sur une pente de 15o, t = 0, 1, 2, 3, 4 , 5 et 10. V
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Figure 4 – Ecoulements gravitaire sur une pente de 15o solution autosemblable stationnaire en
di↵érents x = 1 1.5 2 et 3. (artificiellement c(x, 0) est fixé à 1.

Figure 5 – Ecoulements gravitaire sur une pente de 15o comparaison au temps t = 3. V
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ũ+ ṽ
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⇤ũ

⇤ỹ
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�

�ỹ
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�ỹ2
c̃
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Sculpting of an erodible body by flowing water 
 L. Ristroph, M. Moore, S. Childress, M. Shelley et J. Zhang  PNAS 12

Erosion d’une sphère d’argile

«Déduction» de l’expérience : Les points de stagnation et de séparation sont connus pour être 
associés à de faibles contraintes de cisaillement. Cela suggère que la capacité de l’écoulement à 

retirer du matériaux est lié au cisaillement...

Self-similar evolution of a body eroding in a fluid flow 
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FIG. 2. Visualizing the flow around a cylindrical body at different times in the erosion process. Streaklines are captured by
10 ms exposure time photographs of tracer particles illuminated by a laser sheet, and the initial diameter of the body is 3.6 cm.
(a) Early in the process, t = 5 min, the incoming flow stagnates at the nose and conforms to the body until separating just
upstream of the widest portion. The wake behind the body consists of a relatively slow and unsteady flow. (b) At t = 55 min,
the body has formed a quasi-triangular shape, yet the flow structure is qualitatively similar. The flow stagnates at the nose
and separates near the body’s widest portion, in this case near the back corners of the triangular shape. (c) and (d) Flow
schematics.

8 min and color coded in time (color). Data are shown through 115 min at which time the support
pole obstructs the view of the body’s cross-section. As seen in the figure, erosion leads to an overall
shrinkage of the body in time, and differential removal rates along the surface lead to changes in
shape. In particular, the initially round boundary is carved into a quasi-triangular shape with one
corner located at the nose and a corner on each side of the body. The front of the body is thus wedge-
like and pointing into the flow, and erosion occurs predominately along these surfaces. The backside
experiences relatively weak erosion rate and does not change shape as significantly. Nonetheless,
interesting facets are seen to develop immediately behind the back corners, causing the body to
appear somewhat pentagonal.

To relate these interfacial dynamics to the surrounding fluid, we visualize the flow field with
tracer particles. The particles (glass microspheres of typical size 40 µm) are illuminated by a laser
sheet at the mid-height of the tunnel and photographed with an exposure time of 1/100 s. The
images in Figs. 2(a) and 2(b) reveal the flow streaklines early in the experiment (5 min) and later
(55 min) when the body has eroded significantly. The corresponding schematics of Figs. 2(c) and
2(d) highlight some important flow features. Early in the process, the incoming flow stagnates
at the front, conforms to the body along the cheeks, and separates just upstream of the widest
portion of the cylinder. The wake sits downstream of the body and consists of a relatively slow and
time-dependent flow. These features are similar to those observed for rigid cylinders at comparable
Reynolds numbers, indicating that the material removal process does not strongly influence the
instantaneous flow structure. Similar flow features can be seen around the quasi-triangular body
that is formed later in the experiments. Again, the flow is characterized by a stagnation point at the
nose, two separation points on either side of the body, and a relatively slow wake. In this case, flow
separation occurs near the side corners on the body, and the facets sit immediately behind these
corners.

In Sec. V, we will present further analysis of the interfaces in Fig. 1(b). In particular, we will
quantify the body’s cross-sectional area in time and compute the instantaneous material-removal rate
as a function of the arc length. These results will be compared with results from a fluid mechanical
model of erosion, which we present next.

III. THE MODEL

Here, we outline the main concepts underlying our fluid mechanical model of erosion. The first
main ingredient is a constitutive law relating solid body erosion to the surrounding fluid flow. For
the clay material used here, previous experiments12 have shown the local rate of material removal
to be linearly proportional to the absolute fluid shear stress, |τ |. Thus, at an instant in time, the solid
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FIG. 3. High-Re flow past a bluff body in two dimensions. (a) The fluid flow is comprised of an outer and boundary layer
flow, with the dashed curve indicating the thickness of the boundary layer. At the separation point, the boundary layer detaches
and a wake is formed. The dotted curve represents the separating streamline. (b) Zoom into the boundary layer. The velocity
profile inside the boundary layer approaches the outer tangential velocity U(s) at a characteristic distance δ(s). Fluid shear
stress is proportional to the slope of the velocity profile at the surface (darkened).

Navier-Stokes Eqs. (2)–(4) leads to the Prandtl boundary layer equations17, 18

u
∂u
∂s

+ v
∂u
∂n

− ν
∂2u

∂n2 = UU ′, (10)

∂u
∂s

+ ∂v

∂n
= 0. (11)

As diagrammed in Fig. 3(b), (s, n) are the tangential and normal surface coordinates with corre-
sponding velocity components (u, v) of the inner flow. The Prandtl equations hold within a boundary
layer of thickness, δ(s), which has characteristic scale,17, 18

δ∗ =
√

νa
U0

. (12)

Here, a = a(t) is a characteristic length-scale of the body which we take to be half the width
transverse to the flow; e.g., for the case of a circle, a is simply the radius. Boundary conditions for
Eqs. (10) and (11) include

u(s, 0) = v(s, 0) = 0, (13)

u(s, n) → U as n/δ∗ → ∞, (14)

∂2u

∂n2 (s, 0) = −1
ν

UU ′. (15)

Equation (13) is simply a restatement of the no-slip boundary condition (4), while Eq. (14) is a
matching condition for the inner and outer velocity fields. Equation (15) results from evaluating
Eq. (10) at n = 0 and enforcing condition (4). With the inner flow determined by Eqs. (10)–(15), the
shear stress on the solid boundary is given by

τ (s) = νρ
∂u
∂n

(s, 0). (16)

As expressed in this formula, shear stress is proportional to the slope of the velocity profile at
the surface, which we highlight in Fig. 3(b). Note that it is |τ | that enters the constitutive law of
Eq. (1). Thus, based simply on this law, one would expect corners to form at points where τ vanishes,
including at the nose and at the separation points.

B. Outline of simulation method

The Prandtl decomposition offers a significant simplification of the original Navier-Stokes
system, which can be exploited to efficiently compute the fluid flow and simulate the erosion
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On plonge un cylindre d’argile de 3,6 cm de diamètre dans un écoulement à 61 cm/s.
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Erosion d’un cylindre d’argile 

To provide more direct evidence for stress uniformity, we use
a computational method to analyze the flow around finite bodies.
Our simulation determines local shear stress by combining a model
of the outer flow with solutions to the boundary layer velocity

profile. Importantly, the computed outer flow includes the effects
of flow separation and a wake, as detailed in Methods. In Fig. 4A,
we highlight key features of the simulated flow around the ex-
perimentally extracted body shape. The streamlines (solid lines)
become more closely spaced as they deflect around the body
and its wake (blank), indicating accelerating flow outside of the
boundary layer (dark gray). Upstream of separation, the shear is
related to this external velocity and to the local boundary-layer
thickness, plotted as a function of arc length in Fig. 4B. Both ve-
locity and thickness increase along the body, suggesting that their
ratio U=δ is relatively constant. Indeed, as shown in the lower
panel of Fig. 3D, the computed shear stress as a function of arc
length for the eroded shape (blue) is flat in comparison with that of
the initial shape (red). For both shapes, an apparent discrepancy
occurs at the front, where the predicted stress is zero but the
measured erosion rate is relatively high. Here, small-scale flow
fluctuations may be responsible for rounding the nose of the body.
Our discovery of the uniform-stress morphology as an attract-

ing state of erosion indicates the presence of a stabilizing effect in
the flow–structure interaction. This feedback mechanism can be
intuited by considering the effect of perturbations to an eroding
surface. If some site on the boundary were to have higher stress
than its neighbors, it would recede more quickly, which in general
will shield the site from the flow and thus diminish its stress.
Likewise, a site of low stress will be exposed as nearby locations
erode, again causing conformity of stress. This argument does not
seem restricted to particular flows or geometries. For example,
when conditions are isotropic, as might be expected for Newton’s
wave-tossed pebbles, round shapes will likely prevail. The more
general principle, however, appears to be a tendency not toward
smoothness of shape but rather smoothness of stress.
Future studies might investigate whether sharp features, tempo-

ral self-similarity, and stress conformity appear in other scenarios,
such as at low Reynolds number or for flows confined within
erodible boundaries. Our findings would offer a powerful simplifi-
cation in that steady-state morphology could be explained or
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Fig. 3. Evolution of an erodible
cylinder. Clay is molded into a
cylinder of diameter 3.6 cm,
placed in the 61-cm/s flow, and
photographed every minute from
a view along its axis. (A) Extracted
interfaces displayed every 5 min
and color-coded in time, with flow
from left to right. (B) The mea-
sured cross-sectional area (solid
black curve) matches the theo-
retical prediction (dashed red).
Inset: Logarithmic-scale plot of
normalized area and time. (C )
Equal-area rescaling of the inter-
faces reveals self-similar dynamics.
The wedgelike front forms by
about 45 min and then persists.
(D) Erosion rate and computed
shear stress along the body for
early (red) and late (blue) times.
Upper: The normal velocity of
the interface is plotted against
arc length, where 0 is the front,
0.5 the back of the body, and
flow separation points are marked
by the dashed vertical lines. Lower:
Shear stress computed by simu-
lating the flow around the ex-
perimentally extracted shapes.
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Fig. 4. Simulation of the flow around an eroded body. (A) For the experi-
mentally extracted shape of Fig. 3 (t = 100 min), free-streamline and
boundary-layer theories are used to compute the flow field. The streamlines
(black) become compressed as they deflect around the body, indicating ac-
celerating flow. A thin boundary layer (dark gray) develops in front and
a stagnant wake (blank) sits downstream. (B) Computed boundary-layer
thickness (dashed curve) and flow profiles, shown at two selected points. The
flow speed matches the local outer flow value U at a distance δ. Both U and δ
increase along the body, yielding similar slopes (darkened) of the flow
profiles at the surface and thus nearly uniform shear.

19608 | www.pnas.org/cgi/doi/10.1073/pnas.1212286109 Ristroph et al.

Après une période transitoire, l’évolution de l’interface est auto-similaire !

L’avant du cylindre érodé forme un coin, les auteurs utilisent donc la solution de Falkner-Skan.

Lorsque le coin présente un angle droit, ce qui semble être le cas ici, la contrainte de cisaillement est 
identique tout au long de l’interface. 

selfsimilarity



Erosion d’un cylindre d’argile 

La simulation détermine la contrainte de cisaillement locale en combinant un modèle pour l’écoulement 
externe (qui inclut les effets de séparation de l’écoulement et le sillage) avec les solutions pour le champ 
de vitesse dans la couche limite. 

L’écoulement extérieur est déterminé la transformation conforme de Levi-Civita. Le profil de vitesse 
dans la couche limite est approché par la méthode de Pohlhausen (méthode intégrale). 

cf Brivois Bonelli Borghi 07 (en turbulent)

ideal fluid
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boundary recedes with a local normal velocity given by

Vn = −C |τ | , (1)

where C is a material-dependent constant (i.e., the erodibility). This law is similar to others that can
be found in the literature,15, 16 which sometimes incorporate additional parametric dependencies,
such as a power for the shear stress and/or a threshold shear stress below which material does not
erode.

For high-Reynolds-number flows, shear stress is associated with a thin boundary layer surround-
ing the body, and we therefore use Prandtl boundary layer theory as the foundation of our model.
Further, since we observe the body to remain cylindrical throughout our experiments, we treat the
fluid flow as two dimensional. In the following, we outline the main ideas from Prandtl theory
needed in our model, and then we describe a simulation method based on those ideas. The Prandtl
framework allows for certain analytical results which we present in Sec. IV, before presenting the
main results of the simulations in Sec. V.

A. The Prandtl decomposition

The fluid flow exterior to the cylindrical body is governed by the 2D incompressible Navier-
Stokes equations,

∂u
∂t

+ (u · ∇) u = − 1
ρ

∇ p + ν∇2u, (2)

∇ · u = 0, (3)

u = 0 on ∂ B (4)

u → (U0, 0) as |x| → ∞. (5)

We model erosion by allowing solid material on the boundary, ∂B, to become fluidized. New fluid
parcels are introduced into the fluid domain with zero momentum, giving the vanishing boundary
condition (4). Far away from the body, the velocity field matches the free-stream value U0, as in
Eq. (5). Owing to the large separation of time-scales between erosion rate and flow rate, we treat the
fluid flow as quasi-steady by setting ∂t u = 0 hereafter.

Prandtl boundary layer theory provides a well-established framework to analyze high-Re flows
by partitioning the fluid domain into an outer and inner region, as diagramed in Fig. 3(a). In the
outer region, sufficiently far from boundaries and excluding the wake, the flow can be treated as
inviscid, i.e., ν = 0 in Eq. (2). If the outer velocity field, uo, is initially irrotational, ∇ × uo = 0,
then it remains irrotational at later times and can be described by a velocity potential, uo = U0∇φ,
where

∇2φ = 0, (6)

∇φ · n̂ = 0 on ∂ B (7)

∇φ → (1, 0) as |x| → ∞. (8)

The outer flow has vanishing normal velocity on the boundary, as indicated by the Neumann condition
(7). However, since the outer flow is inviscid, it may have a tangential, slip velocity, given by

U (s) = ŝ · uo |∂ B . (9)

Here, s is arc length along the boundary with unit direction ŝ. The outer, tangential velocity, U, along
with its derivative, U′ = dU/ds, will facilitate the determination of the inner flow.

The inner region consists of a thin layer surrounding the solid boundaries, as shown in
Figs. 3(a) and 3(b). Here, the effects of viscosity come to bear, and scaling analysis of the
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FIG. 3. High-Re flow past a bluff body in two dimensions. (a) The fluid flow is comprised of an outer and boundary layer
flow, with the dashed curve indicating the thickness of the boundary layer. At the separation point, the boundary layer detaches
and a wake is formed. The dotted curve represents the separating streamline. (b) Zoom into the boundary layer. The velocity
profile inside the boundary layer approaches the outer tangential velocity U(s) at a characteristic distance δ(s). Fluid shear
stress is proportional to the slope of the velocity profile at the surface (darkened).

Navier-Stokes Eqs. (2)–(4) leads to the Prandtl boundary layer equations17, 18

u
∂u
∂s

+ v
∂u
∂n

− ν
∂2u

∂n2 = UU ′, (10)

∂u
∂s

+ ∂v

∂n
= 0. (11)

As diagrammed in Fig. 3(b), (s, n) are the tangential and normal surface coordinates with corre-
sponding velocity components (u, v) of the inner flow. The Prandtl equations hold within a boundary
layer of thickness, δ(s), which has characteristic scale,17, 18

δ∗ =
√

νa
U0

. (12)

Here, a = a(t) is a characteristic length-scale of the body which we take to be half the width
transverse to the flow; e.g., for the case of a circle, a is simply the radius. Boundary conditions for
Eqs. (10) and (11) include

u(s, 0) = v(s, 0) = 0, (13)

u(s, n) → U as n/δ∗ → ∞, (14)

∂2u

∂n2 (s, 0) = −1
ν

UU ′. (15)

Equation (13) is simply a restatement of the no-slip boundary condition (4), while Eq. (14) is a
matching condition for the inner and outer velocity fields. Equation (15) results from evaluating
Eq. (10) at n = 0 and enforcing condition (4). With the inner flow determined by Eqs. (10)–(15), the
shear stress on the solid boundary is given by

τ (s) = νρ
∂u
∂n

(s, 0). (16)

As expressed in this formula, shear stress is proportional to the slope of the velocity profile at
the surface, which we highlight in Fig. 3(b). Note that it is |τ | that enters the constitutive law of
Eq. (1). Thus, based simply on this law, one would expect corners to form at points where τ vanishes,
including at the nose and at the separation points.

B. Outline of simulation method

The Prandtl decomposition offers a significant simplification of the original Navier-Stokes
system, which can be exploited to efficiently compute the fluid flow and simulate the erosion

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.157.34.22 On: Wed, 28 May 2014 09:24:59

116602-7 Moore et al. Phys. Fluids 25, 116602 (2013)

process. Due to the quasi-steady assumption, we need only compute the steady flow field around a
given shape, and thus our method consists of three steps:

1. Given the body shape at some time, determine the surrounding steady fluid flow.
2. From the fluid flow, determine the shear stress, τ , along the solid boundary.
3. Evolve the boundary according to the erosion law, Eq. (1), and return to step 1.

In this section, we outline the main ideas of the method, while we present a more detailed
explanation of the numerical methods in the Appendix.

Our Prandtl-based method must confront the subtlety of how to model the wake, where shed
vorticity from the boundary layer causes the irrotational assumption of the outer flow to be violated.
The FST19–21 offers a means of solution by postulating that the boundary layer separates to form
“free” streamlines which enclose the wake (see Fig. 3(a)). Ideal flow holds outside of the wake,
while inside assumptions must be made regarding the distributions of vorticity and pressure.22–24

Here, we use the relatively simple Helmholtz/Kirchhoff (HK) model,13, 14 which assumes a stagnant
wake of infinite extent, inside of which pressure is equal to its far field value, p0. This mini-
mal set of assumptions is appealing from a modeling perspective, and, moreover, the HK model
is considered a plausible candidate for separated-flow structure in the limit of infinite Reynolds
number.19

In the outer region, the velocity field is steady potential flow, and thus the steady Bernoulli
equation applies throughout

p + 1
2
ρ |uo|2 = p0 + 1

2
ρU 2

0 . (17)

By continuity, the pressure on the free streamlines is equal to the value in the wake, p0, and therefore
Bernoulli’s equation implies that |uo| = U0 on the free streamlines. In terms of the potential, this
condition becomes

|∇φ| = 1 on the free streamlines. (18)

As detailed in the Appendix, our FST method uses conformal mapping techniques to simultaneously
determine the positions of the free streamlines and the velocity potential through the numerical
solution of Eqs. (6)–(8), and (18). To uniquely determine the free streamlines, it is necessary to
specify the points on the body at which the flow initially separates. For this, we use the Brillouin-
Villat (BV) condition,19, 25, 26 a regularity condition requiring the curvature of the free streamlines
to match that of the body at the separation points. The numerically determined outer flow then
feeds into the Prandtl PDEs, Eqs. (10)–(15), which we solve approximately with the von Kármán-
Pohlhausen (VKP) method.18, 27, 28 The VKP method relies on similarity transform and vertical
integration of the Prandtl PDEs to obtain an ordinary differential equation (ODE) for boundary
layer thickness. We solve this ODE numerically and extract the shear stress, which we then use
to evolve the boundary through Eq. (1). Since Eq. (1) depends on |τ |, corners are expected to
form near the stagnation and the separation points. Meanwhile, our FST method requires smooth
bodies, and so to regularize boundary evolution we introduce a term involving the local body
curvature into Eq. (1) – a technique that is often used in problems of front propagation.29, 30 As
a result, our simulation allows the development of corner-like features that are smooth on a fine
scale.

In Sec. V, we will describe the results of the simulation in terms of dimensionless quantities,
with the outer velocity scaled on U0 and length scaled on a0 (the initial value of a(t)). In order to
non-dimensionalize the quantities describing the inner flow, we use a fixed characteristic boundary
layer thickness given by

δ∗
0 =

√
νa0

U0
=

√
2

Re
a0. (19)
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boundary recedes with a local normal velocity given by

Vn = −C |τ | , (1)

where C is a material-dependent constant (i.e., the erodibility). This law is similar to others that can
be found in the literature,15, 16 which sometimes incorporate additional parametric dependencies,
such as a power for the shear stress and/or a threshold shear stress below which material does not
erode.

For high-Reynolds-number flows, shear stress is associated with a thin boundary layer surround-
ing the body, and we therefore use Prandtl boundary layer theory as the foundation of our model.
Further, since we observe the body to remain cylindrical throughout our experiments, we treat the
fluid flow as two dimensional. In the following, we outline the main ideas from Prandtl theory
needed in our model, and then we describe a simulation method based on those ideas. The Prandtl
framework allows for certain analytical results which we present in Sec. IV, before presenting the
main results of the simulations in Sec. V.

A. The Prandtl decomposition

The fluid flow exterior to the cylindrical body is governed by the 2D incompressible Navier-
Stokes equations,

∂u
∂t

+ (u · ∇) u = − 1
ρ

∇ p + ν∇2u, (2)

∇ · u = 0, (3)

u = 0 on ∂ B (4)

u → (U0, 0) as |x| → ∞. (5)

We model erosion by allowing solid material on the boundary, ∂B, to become fluidized. New fluid
parcels are introduced into the fluid domain with zero momentum, giving the vanishing boundary
condition (4). Far away from the body, the velocity field matches the free-stream value U0, as in
Eq. (5). Owing to the large separation of time-scales between erosion rate and flow rate, we treat the
fluid flow as quasi-steady by setting ∂t u = 0 hereafter.

Prandtl boundary layer theory provides a well-established framework to analyze high-Re flows
by partitioning the fluid domain into an outer and inner region, as diagramed in Fig. 3(a). In the
outer region, sufficiently far from boundaries and excluding the wake, the flow can be treated as
inviscid, i.e., ν = 0 in Eq. (2). If the outer velocity field, uo, is initially irrotational, ∇ × uo = 0,
then it remains irrotational at later times and can be described by a velocity potential, uo = U0∇φ,
where

∇2φ = 0, (6)

∇φ · n̂ = 0 on ∂ B (7)

∇φ → (1, 0) as |x| → ∞. (8)

The outer flow has vanishing normal velocity on the boundary, as indicated by the Neumann condition
(7). However, since the outer flow is inviscid, it may have a tangential, slip velocity, given by

U (s) = ŝ · uo |∂ B . (9)

Here, s is arc length along the boundary with unit direction ŝ. The outer, tangential velocity, U, along
with its derivative, U′ = dU/ds, will facilitate the determination of the inner flow.

The inner region consists of a thin layer surrounding the solid boundaries, as shown in
Figs. 3(a) and 3(b). Here, the effects of viscosity come to bear, and scaling analysis of the
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boundary recedes with a local normal velocity given by

Vn = −C |τ | , (1)

where C is a material-dependent constant (i.e., the erodibility). This law is similar to others that can
be found in the literature,15, 16 which sometimes incorporate additional parametric dependencies,
such as a power for the shear stress and/or a threshold shear stress below which material does not
erode.

For high-Reynolds-number flows, shear stress is associated with a thin boundary layer surround-
ing the body, and we therefore use Prandtl boundary layer theory as the foundation of our model.
Further, since we observe the body to remain cylindrical throughout our experiments, we treat the
fluid flow as two dimensional. In the following, we outline the main ideas from Prandtl theory
needed in our model, and then we describe a simulation method based on those ideas. The Prandtl
framework allows for certain analytical results which we present in Sec. IV, before presenting the
main results of the simulations in Sec. V.

A. The Prandtl decomposition

The fluid flow exterior to the cylindrical body is governed by the 2D incompressible Navier-
Stokes equations,

∂u
∂t

+ (u · ∇) u = − 1
ρ

∇ p + ν∇2u, (2)

∇ · u = 0, (3)

u = 0 on ∂ B (4)

u → (U0, 0) as |x| → ∞. (5)

We model erosion by allowing solid material on the boundary, ∂B, to become fluidized. New fluid
parcels are introduced into the fluid domain with zero momentum, giving the vanishing boundary
condition (4). Far away from the body, the velocity field matches the free-stream value U0, as in
Eq. (5). Owing to the large separation of time-scales between erosion rate and flow rate, we treat the
fluid flow as quasi-steady by setting ∂t u = 0 hereafter.

Prandtl boundary layer theory provides a well-established framework to analyze high-Re flows
by partitioning the fluid domain into an outer and inner region, as diagramed in Fig. 3(a). In the
outer region, sufficiently far from boundaries and excluding the wake, the flow can be treated as
inviscid, i.e., ν = 0 in Eq. (2). If the outer velocity field, uo, is initially irrotational, ∇ × uo = 0,
then it remains irrotational at later times and can be described by a velocity potential, uo = U0∇φ,
where

∇2φ = 0, (6)

∇φ · n̂ = 0 on ∂ B (7)

∇φ → (1, 0) as |x| → ∞. (8)

The outer flow has vanishing normal velocity on the boundary, as indicated by the Neumann condition
(7). However, since the outer flow is inviscid, it may have a tangential, slip velocity, given by

U (s) = ŝ · uo |∂ B . (9)

Here, s is arc length along the boundary with unit direction ŝ. The outer, tangential velocity, U, along
with its derivative, U′ = dU/ds, will facilitate the determination of the inner flow.

The inner region consists of a thin layer surrounding the solid boundaries, as shown in
Figs. 3(a) and 3(b). Here, the effects of viscosity come to bear, and scaling analysis of the
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externe (qui inclut les effets de séparation de l’écoulement et le sillage) avec les solutions pour le champ 
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L’écoulement extérieur est déterminé la transformation conforme de Levi-Civita. Le profil de vitesse 
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boundary recedes with a local normal velocity given by

Vn = −C |τ | , (1)

where C is a material-dependent constant (i.e., the erodibility). This law is similar to others that can
be found in the literature,15, 16 which sometimes incorporate additional parametric dependencies,
such as a power for the shear stress and/or a threshold shear stress below which material does not
erode.

For high-Reynolds-number flows, shear stress is associated with a thin boundary layer surround-
ing the body, and we therefore use Prandtl boundary layer theory as the foundation of our model.
Further, since we observe the body to remain cylindrical throughout our experiments, we treat the
fluid flow as two dimensional. In the following, we outline the main ideas from Prandtl theory
needed in our model, and then we describe a simulation method based on those ideas. The Prandtl
framework allows for certain analytical results which we present in Sec. IV, before presenting the
main results of the simulations in Sec. V.

A. The Prandtl decomposition

The fluid flow exterior to the cylindrical body is governed by the 2D incompressible Navier-
Stokes equations,

∂u
∂t

+ (u · ∇) u = − 1
ρ

∇ p + ν∇2u, (2)

∇ · u = 0, (3)

u = 0 on ∂ B (4)

u → (U0, 0) as |x| → ∞. (5)

We model erosion by allowing solid material on the boundary, ∂B, to become fluidized. New fluid
parcels are introduced into the fluid domain with zero momentum, giving the vanishing boundary
condition (4). Far away from the body, the velocity field matches the free-stream value U0, as in
Eq. (5). Owing to the large separation of time-scales between erosion rate and flow rate, we treat the
fluid flow as quasi-steady by setting ∂t u = 0 hereafter.

Prandtl boundary layer theory provides a well-established framework to analyze high-Re flows
by partitioning the fluid domain into an outer and inner region, as diagramed in Fig. 3(a). In the
outer region, sufficiently far from boundaries and excluding the wake, the flow can be treated as
inviscid, i.e., ν = 0 in Eq. (2). If the outer velocity field, uo, is initially irrotational, ∇ × uo = 0,
then it remains irrotational at later times and can be described by a velocity potential, uo = U0∇φ,
where

∇2φ = 0, (6)

∇φ · n̂ = 0 on ∂ B (7)

∇φ → (1, 0) as |x| → ∞. (8)

The outer flow has vanishing normal velocity on the boundary, as indicated by the Neumann condition
(7). However, since the outer flow is inviscid, it may have a tangential, slip velocity, given by

U (s) = ŝ · uo |∂ B . (9)

Here, s is arc length along the boundary with unit direction ŝ. The outer, tangential velocity, U, along
with its derivative, U′ = dU/ds, will facilitate the determination of the inner flow.

The inner region consists of a thin layer surrounding the solid boundaries, as shown in
Figs. 3(a) and 3(b). Here, the effects of viscosity come to bear, and scaling analysis of the
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FIG. 4. Body area versus time. (a) Area measurements of the experimental interfaces from Fig. 1(b) (black) show excellent
agreement with the scaling law from Eq. (23) (dashed, red) (adapted from Ristroph et al.12). This formula allows us to
estimate the vanishing time, tf, from the experiments. (b) Log-log plot of the area measurements from the experiment (black)
and simulation (gray). Both match the 4/3-power prediction.

symmetrically into the flow. While our previous work made reference to this class of solutions,12

here we provide a more complete description that is largely self-contained.
As can be determined by elementary conformal mapping,18 the outer, tangential velocity along

a wedge with opening angle 2α is given by U(s) = c0sm, where m = α/(π − α), c0 is a constant, and
s is arc length from the nose. For the inner flow, let a stream-function ψ be defined by u = ∂nψ and
v = −∂sψ . In terms of ψ , the Prandtl equation (10) becomes

∂ψ

∂n
∂2ψ

∂n∂s
− ∂ψ

∂s
∂2ψ

∂n2 − ν
∂3ψ

∂n3 = mc2
0s2m−1. (24)

Introducing the similarity variable, η = n/δs, where δs =
√

νs/U , and expressing the stream-function
as ψ =

√
νsU f (η) reduces Eq. (24) to an ODE for f(η),

f ′′′ + 1
2

(m + 1) f f ′′ − m f ′2 + m = 0. (25)

From Eq. (16), the shear stress is given by

τ (s) = c1 s(3m−1)/2. (26)

The constant is given by c1 = ρ
√

νc3
0 f ′′(0), where f ′′(0) may be determined by the numerical

solution of Eq. (25), subject to boundary conditions.18

This constant, however, is not needed to understand how the shear stress depends on the wedge’s
opening angle, 2α. For an acute angle, α < π /4, the exponent in Eq. (26) is negative, implying highest
shear stress near the nose, s = 0. In Fig. 5(a), we illustrate the velocity field around a narrow wedge,

(a) (b) (c)

FIG. 5. Falkner-Skan similarity solutions for flow past wedges. (a) Illustration of the outer and boundary-layer flow past a
wedge with acute opening angle. The shear stress is highest near the nose as indicated by the surface slopes of the velocity
profiles. This causes the wedge to broaden as it erodes, which we indicate by the white dotted wedge. (b) For an obtuse
opening angle, the shear stress increases downstream, and the wedge tends to become more narrow at later times. (c) A
right-angled wedge produces uniform shear stress, which allows the shape to be maintained during erosion.
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and simulation (gray). Both match the 4/3-power prediction.

symmetrically into the flow. While our previous work made reference to this class of solutions,12

here we provide a more complete description that is largely self-contained.
As can be determined by elementary conformal mapping,18 the outer, tangential velocity along

a wedge with opening angle 2α is given by U(s) = c0sm, where m = α/(π − α), c0 is a constant, and
s is arc length from the nose. For the inner flow, let a stream-function ψ be defined by u = ∂nψ and
v = −∂sψ . In terms of ψ , the Prandtl equation (10) becomes

∂ψ

∂n
∂2ψ

∂n∂s
− ∂ψ

∂s
∂2ψ

∂n2 − ν
∂3ψ

∂n3 = mc2
0s2m−1. (24)

Introducing the similarity variable, η = n/δs, where δs =
√

νs/U , and expressing the stream-function
as ψ =

√
νsU f (η) reduces Eq. (24) to an ODE for f(η),

f ′′′ + 1
2

(m + 1) f f ′′ − m f ′2 + m = 0. (25)

From Eq. (16), the shear stress is given by

τ (s) = c1 s(3m−1)/2. (26)

The constant is given by c1 = ρ
√

νc3
0 f ′′(0), where f ′′(0) may be determined by the numerical

solution of Eq. (25), subject to boundary conditions.18

This constant, however, is not needed to understand how the shear stress depends on the wedge’s
opening angle, 2α. For an acute angle, α < π /4, the exponent in Eq. (26) is negative, implying highest
shear stress near the nose, s = 0. In Fig. 5(a), we illustrate the velocity field around a narrow wedge,

(a) (b) (c)

FIG. 5. Falkner-Skan similarity solutions for flow past wedges. (a) Illustration of the outer and boundary-layer flow past a
wedge with acute opening angle. The shear stress is highest near the nose as indicated by the surface slopes of the velocity
profiles. This causes the wedge to broaden as it erodes, which we indicate by the white dotted wedge. (b) For an obtuse
opening angle, the shear stress increases downstream, and the wedge tends to become more narrow at later times. (c) A
right-angled wedge produces uniform shear stress, which allows the shape to be maintained during erosion.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.157.34.22 On: Wed, 28 May 2014 09:24:59

116602-9 Moore et al. Phys. Fluids 25, 116602 (2013)

FIG. 4. Body area versus time. (a) Area measurements of the experimental interfaces from Fig. 1(b) (black) show excellent
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FIG. 4. Body area versus time. (a) Area measurements of the experimental interfaces from Fig. 1(b) (black) show excellent
agreement with the scaling law from Eq. (23) (dashed, red) (adapted from Ristroph et al.12). This formula allows us to
estimate the vanishing time, tf, from the experiments. (b) Log-log plot of the area measurements from the experiment (black)
and simulation (gray). Both match the 4/3-power prediction.
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FIG. 5. Falkner-Skan similarity solutions for flow past wedges. (a) Illustration of the outer and boundary-layer flow past a
wedge with acute opening angle. The shear stress is highest near the nose as indicated by the surface slopes of the velocity
profiles. This causes the wedge to broaden as it erodes, which we indicate by the white dotted wedge. (b) For an obtuse
opening angle, the shear stress increases downstream, and the wedge tends to become more narrow at later times. (c) A
right-angled wedge produces uniform shear stress, which allows the shape to be maintained during erosion.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.157.34.22 On: Wed, 28 May 2014 09:24:59

116602-10 Moore et al. Phys. Fluids 25, 116602 (2013)

where the profile surface slopes indicate that shear stress decreases downstream. Since the nose of
such a wedge erodes faster than the downstream portion, the body will tend to broaden during the
course of evolution, which we indicate by the white dotted wedge in the figure. On the other hand,
an obtuse angle, α > π /4, gives a positive exponent in Eq. (26), resulting in a shear stress that
increases downstream. Figure 5(b) illustrates the velocity field for this case, and indicates that such a
wedge will tend to become narrower at later times. Interestingly, an opening angle of 90◦ causes the
exponent in Eq. (26) to vanish, which implies uniform shear stress along the surface of the wedge.
With uniform shear stress, the boundary would recede at the same rate everywhere, allowing the
shape to be maintained (see Fig. 5(c)). In this way, a right-angled wedge front is a candidate for
the terminal form of an eroding body. Moreover, the observation that an acute wedge will tend to
become broader and an obtuse wedge will narrow suggests stability of the right-angled front.

V. SIMULATION RESULTS

Dynamical simulation provides a controlled setting in which to compare our model to the
experiments and to test the above analytical predictions. In this section, we present the main results
of the simulation, with the detailed explanation of the numerical methods provided in the Appendix.

A. Erosion of an initially circular body and comparison to experiments

First, for comparison with the experiments, we simulate the erosion of an initially circular body.
In Fig. 6(a), we show the evolution of the eroding body at equally spaced time intervals. As the
body shrinks, it morphs into a triangular shape pointing into the flow, much like that seen in the
experiments. In our simulation, no erosion occurs on the backside due to the assumption that the
wake is stagnant, and this is in reasonable accordance with the relatively slow erosion observed on
the body’s back in experiments (see Fig. 1(b)). Unlike the experiment, the simulation permits us
to observe body evolution up until the time of vanishing. It is clear in Fig. 6(a) that at later times
the distance between successive interfaces grows larger. This observation is consistent with a shear
stress that increases with decreasing body size as in Eq. (22). To test this scaling quantitatively,
we plot in Fig. 4(b) the area of the interfaces against rescaled time, 1 − t/tf, which demonstrates
excellent agreement between the simulation and the predicted 4/3-power law of Eq. (23), as well as
with the experimental measurements of area.

To more clearly illustrate how the body changes shape, we show in Fig. 6(b) the interfaces
shifted to have the same leading point and rescaled to have equal area. As seen in the figure, the
front morphs rapidly to its wedge-like form, while evolution proceeds more slowly further back on

FIG. 6. Erosion of an initially circular body. (a) Interfaces from the simulation at evenly spaced time intervals of 0.06 tf,
with time indicated by the scale bar at right (color). As it shrinks, the body forms a quasi-triangular shape with a wedge-like
front that points into the flow. (b) Shifting the interfaces to have the same leading point and rescaling to have equal area
more clearly reveals the shape change. (c) The same rescaling procedure applied to the experimental interfaces shows similar
evolution and terminal shape.
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