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Motivations
Framework

Sediments transport is responsible of modification of river beds.
2 processes of sediments transport:

by suspension: particles can be found on the whole vertical
water depth and rarely be in contact with the bed,

by bedload: particles are moving near the bed by saltation and
rolling.

In the following, we only focuse on the bedload transport.
In the literature, most of industrial codes use the
Saint-Venant–Exner model.
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Motivations
Stochastic viewpoint

Work initiated during the CEMRACS 2013.

The Exner equation is based in the conservation of the solid
mass and needs the definition of a solid flux. It appears practical
but still very coarse.
At the grain scale to the laboratory one, physical experiments
reveal fluctuations of the solid flux (Recking et al.).

(a) Time variation of
solid discharge.

(b) Distribution of solid
discharge.
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Stochastic viewpoint

Work initiated during the CEMRACS 2013.

The Exner equation is based in the conservation of the solid
mass and needs the definition of a solid flux. It appears practical
but still very coarse.

At the grain scale to the laboratory one, physical experiments
reveal fluctuations of the solid flux (Recking et al.).

(c) Time variation of
solid discharge.

(d) Distribution of solid
discharge.
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Motivations
Stochastic viewpoint

Work initiated during the CEMRACS 2013.

The Exner equation is based in the conservation of the solid
mass and needs the definition of a solid flux. It appears practical
but still very coarse.
At the grain scale to the laboratory one, physical experiments
reveal fluctuations of the solid flux (Recking et al.).

(e) Time variation of
solid discharge.

(f) Distribution of solid
discharge.
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Motivations
Stochastic viewpoint

This problem has been investigated by physical theory and various
stochastic Exner equations have been proposed (Jerolmack &
Mohrig 2005, Ancey 2010 & 2014, Furbish et al. 2012).

We propose a numerical study of a possible stochastic Exner
equation.
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Saint-Venant–Exner equations
The model

Coupled model:
∂tH + ∂x (Q) = 0, (1a)

∂tQ + ∂x

(
Q2

H
+

gH2

2

)
= −gH∂xB −

τ

ρ
. (1b)

∂tB + ∂xQs = 0, (1c)

between:

the Saint-Venant equations (aka shallow-water equations):
(1a)–(1b)

0
x

z

U(t, x)

B(t, x)

H(t, x)
H(t, x): water height,
Q(t, x) = HU: discharge,
B(t, x): bottom topography,
with x ∈ Ω ⊆ R, t > 0.
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Saint-Venant–Exner equations
The model

τ is defined by the Manning formula,

τ = ρgH
Q|Q|

H2 K 2
s R

4/3
h

, (2)

where, in the particular case of a rectangular channel with width l ,
the hydraulic radius Rh reads

Rh =
lH

l + 2H
.
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Saint-Venant–Exner equations
The model

the Exner equation (1c)

where Qs(t, x) is the solid transport flux defined by

Qs =

√
g(ρs − ρ)d3

ρ
Q?

s (τ?; τ?c )
τ?

|τ?|
(3)

and the Meyer-Peter-Müller formula,

Q?
s = A (|τ?| − τ?c )3/2 (4)

with



A the characteristic length of a grain jump,
ρs , ρ resp. the mass densities of the solid and fluid phases,
g the gravitational acceleration,
τ? the shear stress (aka Shields parameter),
τ?c the critical value for the initiation of motion,
d the grain diameter.
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Stochastic Exner model
Ref. Ancey, 2010

Initiation of sediment transport occurs when τ > τc .

Qs = dñV

with ñ the concentration of moving particles per unit length, V the
longitudinal velocity of the particles defined by the Bagnold
scaling

V =

√
g(ρs − ρ)d

ρ
a(
√
τ? −

√
τ?c )

where V has an exponential distribution and under the local
equilibrium ñ ∝ (τ? − τ?c ), we retrieve the Meyer-Peter-Müller
formula

Q?
s = A (|τ?| − τ?c )

3
2

with A a stochastic coefficient following an exponential
distribution; A(t, x) independent in time and space.
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equilibrium ñ ∝ (τ? − τ?c ), we retrieve the Meyer-Peter-Müller
formula

Q?
s = A (|τ?| − τ?c )

3
2

with A a stochastic coefficient following an exponential
distribution; A(t, x) independent in time and space.

P. Ung (MAPMO) EGRIN – June 30th , 2014 Num. simul. for stoch. Exner eq. 10 / 25



Context & Motivations Saint-Venant–Exner equations Stochastic case Perspectives

Stochastic Exner model
Ref. Ancey, 2010

Initiation of sediment transport occurs when τ > τc .

Qs = dñV
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Discretization of Saint-Venant–Exner model

Model defined on the torus: Periodic boundary conditions.

Space discretization, 2× Nx cells denoted Ci , i+1/2,
i = 0, . . . , Nx − 1,

x
xi−1/2 xi+1/2

Ci

∆xi = xi+1/2 − xi−1/2

xi

Ci−1/2, i Ci , i+1/2

Ci+1/2

xi+1

W n
i = (Hn

i ,Q
n
i ) defined on Ci ,

Bn
i+1/2 defined on Ci+1/2.
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Discretization of Saint-Venant–Exner model

1. Finite Volume method for the fluid quantities

W n+1
i = W n

i −
∆tn

∆x

(
F n

i+1/2 − F n
i−1/2

)
+

∆tn

∆x
S(W n

i ,B
n
i−1/2,B

n
i+1/2),

(5)

where Fi+1/2 is the numerical flux defined by the Rusanov
formula,

Fi+1/2 = F (Wi ,Wi+1) =
F (Wi ) + F (Wi+1)

2
− c

Wi+1 −Wi

2
,

(6)

with F (W ) = (Q,
Q2

H
+

gH2

2
)T ,

c = max
(
|U i |+

√
gH i , |U i+1|+

√
gH i+1

)
and

S(W n
i ,W

n
i+1) is a discrete source term written as

S(W n
i ,B

n
i−1/2,B

n
i+1/2) =

(
0

gHn
i (Bn

i+1/2 − Bn
i−1/2)

)
. (7)
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Discretization of Saint-Venant–Exner model

2. Bottom topography appoximated by a centered finite
difference formula,

Bn+1
i+1/2 = Bn

i+1/2−
∆tn

∆x

(
Qs(Hn

i+1,U
n
i+1)− Qs(Hn

i ,U
n
i )
)
, (8)

Discrete stochastic solid flux given by the stochastic
Meyer-Peter-Müller formula

(Qs)n
i =

√
g(ρs − ρ)d3

ρ
An

i (|(τ?)n
i | − τ?c )

3
2 sg((τ?)n

i )

where An
i are independent identically distributed random variables

with exponential distribution.
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Stochastic Saint-Venant–Exner model
Monte-Carlo simulations

Description of the deterministic case

Stationary uniform flow in torrential regime,

Sloped bottom topography.

Number of realizations M = 1000.
Tfin sufficiently large such that the empirical variance of all the
quantities of interest seems close to long-time stationary values.
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Monte-Carlo simulations for the SVE model
Numerical results

Figure: Empirical mean of the topography deviation for two meshes (left)
and empirical variance of the topography deviation for different meshes
(right)
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Monte-Carlo simulations for the SVE model
Numerical results

Figure: Empirical mean of the velocity for two meshes (left) and
empirical variance of the velocity for different meshes (right)
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Monte-Carlo simulations for the SVE model
Numerical results

Figure: PDFs for the bottom topography deviation (left) the velocity
(right) for the finest mesh
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Stochastic Saint-Venant system
Definition

In order to understand the dissipative phenomenon, we propose to
return to a simpler problem: Saint-Venant equations associated
with a perturbed topography.

Question

Could the perturbed topography be responsible of the dissipative
effect?

Expression of the perturbed topography
Bn

i+1/2 = B0
i+1/2 + B̃ i+1/2,

B̃ i+1/2 = α
√

∆x

N/2∑
k=1

1

k

(
ak cos

(
2kπ

i + 1/2

N

)
+ bk sin

(
2kπ

i + 1/2

N

))
,

where B0
i+1/2 corresponds to the non-perturbed initial bottom

topography, ak and bk are values obtained with a normal law
N (0, 1), and α is an imposed amplitude.
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Stochastic Saint-Venant system
Numerical results

Figure: PDF for the velocity (left) and empirical mean of the velocity as
a function of time (right) with Nx = 150
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Stochastic Saint-Venant system
Calibration with the Strickler coefficient Ks

The Strickler coefficient is calibrated so as to enforce the
equilibrium.

Idea

The new coefficient is computed at each time step as a
deterministic function of moments of H and Q.
The expression is established by imposing that no energy is
dissipated by the model,

E

[
Nx−1∑
i=0

Qn+1
i

]
= E

[
Nx−1∑
i=0

Qn
i

]
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equilibrium.

Idea

The new coefficient is computed at each time step as a
deterministic function of moments of H and Q.
The expression is established by imposing that no energy is
dissipated by the model,

E

[
Nx−1∑
i=0

Qn+1
i

]
= E

[
Nx−1∑
i=0

Qn
i

]
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Stochastic Saint-Venant system
Calibration with the Strickler coefficient Ks

New Strickler coefficient

(Ks )n =

−
E

[
Nx−1∑

i=0

Qω,n
i |Q

ω,n
i |

Hω,n
i (Rω,n

h,i )4/3

]

(−∂xB0)× E

[
Nx−1∑

i=0

Hω,n
i

]
+

1

∆x
E

[
Nx−1∑

i=0

Hω,n
i (B̃

ω
i+1/2 − B̃

ω
i−1/2)

]


1/2

(9)
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Stochastic Saint-Venant system
Numerical results

Figure: PDF for the velocity (left) and empirical mean of the velocity as
a function of time (right) with Nx = 150
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Stochastic Saint-Venant system
Numerical results

Figure: Strickler coefficient Ks as a function of time for different meshes
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Perspectives

Modelling the noise introduced in Saint-Venant–Exner so as
to compensate for the dissipation introduced: scaling of the
injected noise with respect to time and space?

Ability to maintain the deterministic equilibrium in the mean
when the bottom topography is perturbed in time in a
stochastic Saint-Venant–Exner.

Robustness of the new model concerning the convergence to a
continuous time-space model.

Comparison of the physical information supported by the
stochastic variable A (characteristic size of ripples. . . ) with
other ones (τ?).
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Thank you for your attention!
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