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Introduction: laminar roll waves in laboratory
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FIG. 3. The evolution of solitary waves forced at f= 1.5 Hz with f=6.4",
R=29, and Weber number W¥=35. Three wave profiles are measured at
inereasing distances from the inlet to show the spatial evolution. Phase-
sensitive averaging is employed here to reduce imaging noise.
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Liu and Gollub experience Photo of 2-d roll-waves
(Phys of Fluids 94) (Park et Nosoko AIChE, 2003)
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Outline of the talk

@ Modeling of thin film flows

» Shallow water equations with surface tension
» Related models: phase transition

@ Stability of difference approximations for shallow water eqs

» Von Neumann (linearized) stability
» Entropy stability (Schrodinger type formulation)

© Numerical simulations

» Entropy stability: numerical comparison
» Liu Gollub experiment (comparison with experimental data)

e Collaboration with J.-P. Vila (IMT Toulouse)
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Thin film flows: shallow water equations

@ Shallow water flows: the aspect ratio is small e = H/L « 1
(Liu Gollub experiment: H ~ 1mm, L ~ 1cm)

@ Small Reynolds numbers: Re € (1;100)

@ Surface tension is not negligible (order O(e) in non dimensional variables)

First order consistent/conservative model (P.N., J.-P. Vila, 2006)

5th 4 5Xq = 0,
2
0eq + ax(% L P(h AL) = Ar(gsin(@)h— 229 4 %h&xxxh) + 400 q,

h2
4 2A sin(@ h?
P(h, A1) = (55 ~ 2—51)(g—y())2h5 + Arg cos(0) -

Remark: the viscous term is heuristic
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Related models: Euler Korteweg equations

Euler-Korteweg equations in conservative variables

dep + Ox(pu) =0,
2u(pu) + 0 (9 + P(p) = b  R(P)ep + (9 (5) = (p)

(0x2p)2) 7

@ x(p) = constant/p: quantum hydrodynamic (=NLS)

o k(p) = constant, P(p) = % — p?: Van der Waals gas (phase transition)

Additional Energy equation

2 a 2
7, (p”2 + Fp) + (o) &2 ) + 0. F(p, t, 3xp, Ges) = 0

C. Chalons, P.G. LeFloch High-Order Entropy-Conservative Schemes and Kinetic
Relations for van der Waals Fluids, JCP (2001): E-K in Lagrangian coordinates of
mass/Semi-discrete schemes
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Stability of difference schemes: von Neumann stability

@ Remark: due to the presence of the third order derivative, the energy
equation is hardly satisfied in the original formulation

o A simplified problem: we check stability for linearized shallow water
equations (=Fourier analysis)

o Interest: provides necessary and, in practice, sufficient condition of
stability

Linearized equations (conservative variables: v = (h,q)")

0tV + Adxv = BV, A:( 28[12 21 ), B:<g 8)

o Dispersion relation: s(k) = 0 ++/¢2 + 5k?

e Heuristic CFL condition s(k)g—i < 1. Here s(k) ~ K/dx then
CFL condition: dt = O(6x?).
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Von Neumann stability I: formulation of the problem

Stability of difference approximation in the form
vt vl (f”:r; — f;”_?) = \3B (v,-’fze - 2v,-":19 +2ovmtl v,-”_+2‘9) (1)

with A\, = 0t/0xK, and v = (1 — O)v/ + 6y "+

Avi + Av 1

. . . _ = n _ n
@ Lax-Friedrichs scheme: flf"_% =—— 2/\l(v,-H vi')
Avl + Av] A
@ Rusanov scheme: f,’jr% =—! 5 ol _ p(2 )(Vilzi-l —v)
. AV FHAVY, Al n
@ Roe scheme: f;+% = TJF - T(Vi-t-l —v/)
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Von Neumann stability Il: first order accurate schemes

Definition
We search for solutions of (1) in the form v/ = £"e~": 3 scheme is stable in the
sense of Von Neumann if || < 1 for all 8 € [0, 27]

o Instability of Roe scheme: The scheme (1) with Roe type flux and § =0
(forward Euler time discretization: FE), # = 1 (backward Euler time
discretization: BE) is always unstable: there exists > 0 such that if A3 <7
and dx < 7, then there exists 6 and £4(0) so that [€_(0)] < 1 < |£4+(0)].

@ Stability of Lax-Friedrichs scheme:

» FE time discretization (6 = 0): stable under cfl condition §t = O(dx?)
» BE time discretization (¢ > 1/2): inconditionally stable

@ Stability of Rusanov scheme:

» FE time discretization (§ = 0): stable under cfl condition 6t = O(5x3)
» BE time discretization (6 > 1/2): inconditionally stable
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Von Neumann stability Ill: second order accurate schemes
We use a MUSCL type scheme for space discretization:

dvj A
7; - @(Vﬁrz —6vj41 +6vji_1— Vi)
14
+ g2 (Vit2 = HVja1 6 — 4y +vo)
B
=53 (Vir2 = 2vjp1 + 2vj1 — vj—2) .

Remark: v, is the numerical viscosity (L-F: v, = 0x3/26t, Ru: v, = p(A)dx)

@ Stability of Lax-Friedrichs scheme:

> Runge Kutta 2 : stable under CFL condition dt = O(dx?)
» Crank Nicolson (0 = 1/2): inconditionally stable

@ Stability of Rusanov scheme:

» Runge Kutta 2 (6 = 0): stable under CFL condition 6t = O(5x"/3)
» Crank Nicolson (0 = 1/2): inconditionally stable
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Entropy stability of difference schemes: new formulation 1

“Entropy” of the Euler-Korteweg system

u? )2
Up, u, dxp) = Jp? L F (o) 4 x(p) (62p>

@ Not an usual entropy (presence of dxp): reduction of order needed
(see C.W. Shu for KdV type equations with DG methods)

K(p)

@ A natural new variable: w = | —=0dxp

@ The “entropy” now U reads

u? + w?

U(p,u,w) = JPT + F(p).
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Entropy stability of difference schemes: new formulation 2

Euler-Korteweg equations: “Schrodinger type formulation”

v + 0xf(v) = 0x(B(p)ox(p~'v)), Bl(p) = (

with v = (p, pu,pw)7, f(v) = (pu, pu® + P(p), puw) .

@ The Schrodinger formulation is obtained by setting ¥ = pu + ipw
(useful for well posedness: see Benzoni-Danchin-Descombes 2006)

o Setting U(v) = p5*° 4 F(v) and G(v) = u(U(v) + P(p)):

Energy equation in the new formulation (classic energy estimate)
0tU(v) 4+ 0xG(v) = Ox (u(p)(udxw — wixu)) . (3)J
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Entropy stability of difference scheme: definition

We consider the following semi discretized system (setting z = p~1v)

f- ;—f-i; B(p;: 1)(Z; —z)—B i1 Zi — Zj_
ivj(t)—i- iy ~ -t (pj41) (Z41 — 7)) (rj-1) (71— z 1). (4)
dt ox 0x?

Definition

The semi-discretized scheme (4) is entropy stable if there exists a numerical flux
Gj 41, consistent with the entropy flux in (3), so that

E. Tadmor Entropy stability theory for difference approximations of nonlinear
conservation laws and related time-dependent problems Acta Numerica (2003)
P.G. LeFloch, J.M. Mercier, C. Rohde Fully discrete, entropy conservative
schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002)
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Entropy stability: fully discrete scheme

@ By using the convexity of the entropy, one has

Theorem

Consider the entropy (spatially) stable semi scheme which is a difference
approximation of (2) with B = 0, then the scheme (??) is (unconditionally)
entropy stable. There exists QJ7+ , so that

2

U = Uv) + G,y — G

f vl Y1 S 0,vj, Vn. (5)

@ For explicit schemes, one has
Theorem

Explicit scheme with Lax-Friedrichs flux is entropy stable with CFL §t « §x?

Explicit scheme with Rusanov flux is entropy stable with CFL 6t « §x>
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Entropy conservation: a Hamiltonian formulation

Hamiltonian formulation of Euler-Korteweg equations:

2

u 2
H(p,u) = Jpg + F(p) + K(p)(apr)dX

at(ﬁ)zjv,}{(f%u): jzax-]a J:(_Ol _01)

@ Other examples of Hamiltonian PDE's: NLS, generalized Korteweg de
Vries equation, Kawahara equation, more generally water wave models

@ A spatial discretization which respects this structure is trivially
entropy conservative
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An Entropy conservative scheme |

@ Restriction to periodic boundary conditions: (o, u) = (pj, uj)i=1
(Pj+ns Ujrn) = (pj, uj)
@ Define for the discretized Hamiltonian

RIEN

SN 1 piv1— i\’
H(o,u) = ) ijj + Fpj) + 55(p5) (#)
=1

@ Define a discretized version of J:

_ 0 —In o Uy — Ui
J_(—I,\, 0 ) Puj = =55

o Discretized Hamiltonian system:
i 0 =J DVQH(Q7 ll)
dt \ u DV.H(g,u) /-
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An entropy conservative scheme |l

@ Spatial discretization with centered difference: no numerical viscosity!

@ Drawback: possible numerical instability (Euler time discretization),
possible occurrence of spurious oscillatory modes (Crank Nicolson time
discretization). Example: discretization of Burgers equation

@ BUT: presence of capillarity (control on the gradient of p)

A fully discrete scheme with backward Euler time discretization is entropy stable.

Theorem J

@ Remark: any explicit method is unstable

@ Question: Time discretization preserving the discrete Hamiltonian?

Theorem

The Crank Nicolson time discretization preserves the Hamiltonian for linearized
Euler-Korteweg equations
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Entropy stability: numerical comparison |

@ Model: shallow water equations with horizontal bottom

2
Oth+ Ox(hu) =0, 0¢(hu) + (9X(hu2 + g%) = %haxxxh.

@ Periodic boundary conditions
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Entropy stability: numerical comparison I

@ Comparison of the original formulation and the “new” formulation

@ Second order schemes for numerical simulations

Entrapy as a function of time
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Schrodinger type formulation: numerical consistency
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Hamiltonian formulation

Formulation hamiltonienne: hauteur de flide

y

/
S
S

60 70 80

"M’Ilﬂﬂﬂl‘-\‘ff"
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@ Conservative scheme in space: no numerical viscosity
@ Time discretization: backward implicit Euler

@ Formation of dispersive shock waves
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Simulation of Liu Gollub experiment (Phys of Fluids 94)

@ Numerical simulation for the shallow water model with A; = 1.
@ Numerical scheme: Rusanov (2nd order) on the extended formulation.

@ Reynolds number Re = 29, Inclination 6 = 6.4°, Weber number We = 35.
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Conclusion

© Summary

» Proof of entropy stability with a new form of Euler-Korteweg equations
» Numerically: “new"” formulation is more stable than original formulation
» Hamiltonian semi-discretization.

@ Perspectives and Open problems

» Generalization to 2d-motions (secondary instabilities)?
» Higher order methods (Discontinous Galerkin methods)?

» Hamiltonian semi-discretization: symplectic method for time
discretization? (leap frog method/implicit-explicit schemes)
» Other models: water wave models (Serre-Green/Naghdi)

8th + ax(hﬂ) = 07
Or(hT) + 0, (hZ? +p) =0, p=°—+ —h.
» Boundary conditions?
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