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Motivations

Better understand dispersive
phenomena in order to better
predict geophysical situations.

(a) Dam break (b) Tsunami

(c) Mascaret (d) Hydraulic jump
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Dispersive effects: Dingemans experiment
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A depth-averaged model

∂H

∂t
+
∂Hu

∂x
+
∂Hv

∂y
= 0

∂Hu

∂t
+

∂

∂x
(Hu2) +

∂

∂y
(Huv) +

∂

∂x
(g
H2

2
) +

∂

∂x
(Hpnh) = −(gH + 2pnh)

∂zb

∂x

∂Hv

∂t
+

∂

∂y
(Hv2) +

∂
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(Huv) +

∂

∂y
(g
H2

2
) +

∂

∂y
(Hpnh) = −(gH + 2pnh)

∂zb

∂y

∂Hw

∂t
+
∂Hwu

∂x
+
∂Hwv

∂y
= 2pnh

−
∂Hu

∂x
−
∂Hv

∂y
+ u

∂(H + 2zb)

∂x
+ v

∂(H + 2zb)

∂y
= 2w̄

• Average velocity
u(x, t) = 1

H

∫ η
zb
u(x, z, t)dz,

• Green-Naghdi class model

• Energy balance
∂E
∂t

+ ∂
∂x

(u(E + gH
2

2
+Hpnh)) = 0

I M.-O.B., A. Mangeney, J.S-.M., and N. Seguin. An energy-consistent
depth-averaged Euler system: derivation and properties. Discrete Contin. Dyn.
Syst. Ser. B, 20(4):961–988, 2015.

I J.S.-M. Vertically averaged models for the free surface Euler system. Derivation
and kinetic interpretation. Math. Models Methods Appl. Sci. (M3AS),
21(3):459–490, 2011.
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Dual operators shallow water version

I Objective : Apply a projection-correction scheme

I Rewrite the model as Euler
I Define the operators divsw and ∇sw :

∇sw (f) =

 H ∂f
∂x + f

∂(H+2zb)

∂x

H ∂f
∂y + f

∂(H+2zb)

∂y

−2f



divsw (v) =
∂Hv1

∂x
+
∂Hv2

∂y
− v1

∂(H + 2zb)

∂x
v2
∂(H + 2zb)

∂y
+ 2v3

which verify:∫
Ω

divsw (v)fdx = −
∫

Ω

∇sw (f) · v dx+

∫
∂Ω

Hfv · n dσ

I Remark that the operators are H and zb dependent.
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Euler formulation

We can rewrite the model:

∂H

∂t
+∇0 · (Hu) = 0

∂Hu

∂t
+∇0 · (Hu⊗ u) +∇0(

g

2
H2) +∇sw (p) = −gH∇0(zb)

divsw (u) = 0

where we note u =

(
u
w

)
the velocity of the Depth-averaged Euler model and

∇0 =

 ∂
∂x
∂
∂y

0
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Fractional time scheme with incremental version

I Hyperbolic step

H
n+1/2
i = Hn

i −
∑
j∈Ki

σijFH(Hn
i , H

n
j )−σiFH(Hn

i , H
n
e,i)

(Hu)
n+1/2
i = (Hu)ni −

∑
j∈Ki

σijF(Hu)((Hu)ni , (Hu)nj )

−σiF(Hu)((Hu)ni , (Hu)ne,i)

I Correction step

Hn+1
i = H

n+1/2
i

(Hu)n+1
i = (Hu)

n+1/2
i −∆t∇sw(pn+1)i

divsw (un+1) = 0.
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Correction step: Variational formulation

I Correction step: solve

Hn+1 = Hn+1/2

(Hu)n+1 + ∆t ∇sw pn+1 = (Hu)n+1/2

divsw
(
un+1

)
= 0

Variational mixed problem

Find u ∈ V and p ∈ Q such that

1

∆tn
a(u,v) + b(v, p) =

1

∆tn
a(un+1/2,v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q.

with

Q = {q ∈ L2(Ω)},

and

V = {v = (v1, v2) ∈ (L2(Ω))3|divsw (v) ∈ L2(Ω)},

a(u,v) =

∫
Ω
Hu · v dx, ∀u,v ∈ V,

b(v, q) = −
∫

Ω
divsw (v)q dx, ∀v ∈ V,∀ q ∈ Q,
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Correction step: Variational formulation

I Correction step: solve

Hn+1 = Hn+1/2

(Hu)n+1 + ∆t ∇sw pn+1 = (Hu)n+1/2

divsw
(
un+1

)
= 0

Variational mixed problem

Find u ∈ V and p ∈ Q such that

1

∆tn
a(u,v) + b(v, p) =

1

∆tn
a(un+1/2,v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q.

I Pressure equation

Shallow water version of the Laplacian equation

∆sw p =
1

∆tn
divsw (un+1/2)

with

∆sw p = divsw

(
1

H
∇sw p

)
.
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Correction step: Variational formulation

I Correction step: solve

Hn+1 = Hn+1/2

(Hu)n+1 + ∆t ∇sw pn+1 = (Hu)n+1/2

divsw
(
un+1

)
= 0

Variational mixed problem

Find u ∈ V and p ∈ Q such that

1

∆tn
a(u,v) + b(v, p) =

1

∆tn
a(un+1/2,v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q.

I Compatibility of the boundary conditions

Hyperbolic part

I Distinguish Fluvial flow / Torrential flow

I Consider a Riemann problem at the interface

Correction part

I Dirichlet or Neumann boundary condition for the pressure

I Slide boundary condition for the velocity
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Numerical approximation

Discrete problem

(
1

∆tn
AH Bt

B 0

)(
U
P

)
=

(
1

∆tn
AHU

n+1/2

0

)
,

MH =

(∫
Ω
Hϕiϕjdx

)
1 ≤ i, j ≤ N

, AH =

 MH 0 0
0 MH 0
0 0 MH

 .

and the two matrices Bt, B defined by

Bt =

(∫
Ω
∇sw(φl)ϕidx

)
1≤l≤M,1≤i≤N

, B = −
(∫

Ω
div sw(ϕj)φldx

)
1≤l≤M,1≤j≤N
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2D finte volume/ Finite element method

I Choice of a stable pair of finite elements.

•

•

• ••

•

•

•

•

•

Figure : Representation of the dual mesh (finite volume mesh)

I Iterative method to solve the linear problem : Conjugate Gradient - Uzawa
algorithm: U(0), P (0)given,while ||BU(k)|| > tolerance :

solve AHU
(k+1) = AHU

n+1/2 −∆tBtP (k)

compute P (k+1) = P (k) + αBU(k) , k > 0
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Properties of the scheme from the 1D scheme

I Positivity of H

CFL condition of the kinetic scheme for the shallow water model ⇒ Positivity of
Hn+1/2

Splitting scheme ⇒ Hn+1 = Hn+1/2

I The lake at rest

Lake at rest⇔ Hu = 0 and H + zb = Cste
Elliptic equation⇒ p = 0
Satisfied by the hydrostatic part with the hydrostatic reconstruction.

I Discrete entropy in time

I Inf-sup condition

————————————————————————————————————
• N.A., M.-O.B., E.G., and J.S-M. A combined finite volume - finite element method
for a dispersive shallow water system Networks and Heterogeneous Media (NHM),
pages 1-27, 2016.
• N.A., M.-O.B., E.G., and J.S-M. robust and stable numerical scheme for a
depth-averaged Euler system. submitted, 2015
• N.A., M.-O.B., E.G., and J.S-M. A two dimensional method for a dispersive shallow
water model. In progress.
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Numerical test for an analytical solution

I Propagation of a solitary wave

H = H0 + a

(
sech

(
x− ct
l

))2

H0 = 1.0 m , a = 0.2 m , c, l ∈ R
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Convergence rate

I Propagation of a solitary wave

H = H0 + a

(
sech

(
x− ct
l

))2

H0 = 1.0 m , a = 0.3 m , c, l ∈ R
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(b) Pressure
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Wet/dry interface

Pressure equation

∆sw p =
1

∆tn
divsw (un+1/2) with ∆sw p = divsw

(
1

max(H, ε)
∇sw p

)
.
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Thacker’s solution

I Add a source term for the momentum
equation:

∂Hw

∂t
+
∂Huw

∂x
+
∂Hvw

∂y
− 2p = Hs.

I solution :

H(x, y, t) = max(0, H0 −
α

2

(
x− a cos(

√
rt)
)2 − β

2

(
y − a sin(

√
rt)
)2
, )

u(x, y, t) = −a
√
r sin(

√
rt),

v(x, y, t) = a
√
r cos(

√
rt),

w(x, y, t) = −αa
√
r sin(

√
rt)x+ αa

√
r cos(

√
rt)y,

p(x, y, t) =
a2αr

2
H,

s(x, y, t) = αar sin(
√
rt)x− αar cos(

√
rt)y,

zb(x, y) =
α

2
(x2 + y2),

where a, α > 0 and aα < 1, r = αg
1−α2a2 .
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Thacker’s result

Thacker’s test - Comparison with analytical solution
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Convergence rate

I First and second order
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Conclusion and outlook

Properties

Discrete entropy
Equilibria

Validation of the scheme

Analytical solution
Comparison with experimental
data 1D

Two dimensional

Variational formulation
Finite element method
Iterative method

Outlook

Higher order
Geophysical case : Tsunami ...
Optimization
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Thank you !

N.Äıssiouene Numerical simulations of a Non-hydrostatic model 19 / 19


	Introduction
	Depth-Averaged model
	Strategy
	Numerical scheme
	Results
	Conclusion and outlook

