A numerical method for a depth averaged Euler system in two dimensions

M.-O. Bristeau E. Godlewski J. Sainte-Marie

ANCE TEAM (Numerical Analysis, Geophysics and Ecology) Inria - CEREMA - Sorbonne Universités, UPMC Univ Paris 06 - CRRS, UMR 7598, Laboratoire Jacques-Louis Lions

> EGRIN 2016 May 23-26, 2016

Depth-Averaged mode

Strateg

Motivations

(a) Dam break

(c) Mascaret

(d) Hydraulic jump

Better understand dispersive phenomena in order to better predict geophysical situations.

Introduction	Depth-Averaged model	Strategy		
Disnersive	effects: Ding	emans exneri	ment	

Depth-Averaged model

Strateg

A depth-averaged model

$$\begin{aligned} \frac{\partial H}{\partial t} &+ \frac{\partial Hu}{\partial x} + \frac{\partial Hv}{\partial y} &= 0\\ \frac{\partial Hu}{\partial t} &+ \frac{\partial}{\partial x}(Hu^2) + \frac{\partial}{\partial y}(Huv) + \frac{\partial}{\partial x}(g\frac{H^2}{2}) + \frac{\partial}{\partial x}(Hp_{nh}) &= -(gH + 2p_{nh})\frac{\partial z_b}{\partial x}\\ \frac{\partial Hv}{\partial t} &+ \frac{\partial}{\partial y}(Hv^2) + \frac{\partial}{\partial x}(Huv) + \frac{\partial}{\partial y}(g\frac{H^2}{2}) + \frac{\partial}{\partial y}(Hp_{nh}) &= -(gH + 2p_{nh})\frac{\partial z_b}{\partial y}\\ \frac{\partial Hw}{\partial t} &+ \frac{\partial Hwu}{\partial x} + \frac{\partial Hwv}{\partial y} &= 2p_{nh}\\ -\frac{\partial Hu}{\partial x} - \frac{\partial Hv}{\partial y} + u\frac{\partial(H + 2z_b)}{\partial x} + v\frac{\partial(H + 2z_b)}{\partial y} &= 2\bar{w} \end{aligned}$$

- Average velocity $u(x,t) = \frac{1}{H} \int_{z_b}^{\eta} u(x,z,t) dz$, • Energy balance $\frac{\partial E}{\partial t} + \frac{\partial}{\partial x} (u(E + g\frac{H^2}{2} + Hp_{\eta h})) = 0$
- Green-Naghdi class model
 - M.-O.B., A. Mangeney, J.S.-M., and N. Seguin. An energy-consistent depth-averaged Euler system: derivation and properties. *Discrete Contin. Dyn. Syst. Ser. B*, 20(4):961–988, 2015.
 - J.S.-M. Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation. *Math. Models Methods Appl. Sci. (M3AS)*, 21(3):459–490, 2011.

Numerical simulations of a Non-hydrostatic model

eptii-Averageu mou	Strategy		

▶ Objective : Apply a projection-correction scheme

- Rewrite the model as Euler
- ▶ Define the operators div_{sw} and $\nabla_{\!\!sw}$:

$$\nabla_{sw} (f) = \begin{pmatrix} H \frac{\partial f}{\partial x} + f \frac{\partial (H+2z_b)}{\partial x} \\ H \frac{\partial f}{\partial y} + f \frac{\partial (H+2z_b)}{\partial y} \\ -2f \end{pmatrix}$$

$$\mathsf{div}_{sw}\left(\mathbf{v}\right) = \frac{\partial Hv_{1}}{\partial x} + \frac{\partial Hv_{2}}{\partial y} - v_{1}\frac{\partial (H+2z_{b})}{\partial x}v_{2}\frac{\partial (H+2z_{b})}{\partial y} + 2v_{3}\frac{\partial (H+2z_{$$

which verify:

$$\int_{\Omega} \operatorname{div}_{sw} \left(\mathbf{v} \right) f dx = -\int_{\Omega} \nabla_{\!sw} \left(f \right) \cdot \mathbf{v} \, dx + \int_{\partial \Omega} H f \mathbf{v} \cdot \mathbf{n} \, d\sigma$$

• Remark that the operators are H and z_b dependent.

		Strategy		Conclusion and outlook
Euler form	nulation			

We can rewrite the model:

$$\begin{aligned} \frac{\partial H}{\partial t} + \nabla_0 \cdot (H\mathbf{u}) &= 0\\ \frac{\partial H\mathbf{u}}{\partial t} + \nabla_0 \cdot (H\mathbf{u} \otimes \mathbf{u}) + \nabla_0 (\frac{g}{2}H^2) + \nabla_{sw} (p) &= -gH\nabla_0(z_b)\\ \mathrm{div}_{sw} (\mathbf{u}) &= 0 \end{aligned}$$

where we note $\mathbf{u}=\left(\begin{array}{c} u\\ w \end{array} \right)$ the velocity of the Depth-averaged Euler model and

$$\nabla_0 = \left(\begin{array}{c} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ 0\end{array}\right)$$

	Depth-Averaged model	Strategy	Numerical scheme	
Fractional	time scheme wit	h incremen	tal version	

Hyperbolic step

$$\begin{split} H_i^{n+1/2} &= H_i^n - \sum_{j \in K_i} \sigma_{ij} \mathcal{F}_H(H_i^n, H_j^n) - \sigma_i \mathcal{F}_H(H_i^n, H_{e,i}^n) \\ (H\mathbf{u})_i^{n+1/2} &= (H\mathbf{u})_i^n - \sum_{j \in K_i} \sigma_{ij} \mathcal{F}_{(H\mathbf{u})}((H\mathbf{u})_i^n, (H\mathbf{u})_j^n) \\ &- \sigma_i \mathcal{F}_{(H\mathbf{u})}((H\mathbf{u})_i^n, (H\mathbf{u})_{e,i}^n) \end{split}$$

Correction step

$$\begin{aligned} H_i^{n+1} &= H_i^{n+1/2} \\ (H\mathbf{u})_i^{n+1} &= (H\mathbf{u})_i^{n+1/2} - \Delta t \nabla_{sw} (p^{n+1})_i \\ \operatorname{div}_{sw} (\mathbf{u}^{n+1}) &= 0. \end{aligned}$$

Introduction

enth-Averaged model

Strategy

Numerical scheme

Correction step: Variational formulation

Correction step: solve

$$\begin{aligned} H^{n+1} &= H^{n+1/2} \\ (H\mathbf{u})^{n+1} + \Delta t \, \nabla_{\!\! sw} \, p^{n+1} &= (H\mathbf{u})^{n+1/2} \\ \mathrm{div}_{sw} \, \left(\mathbf{u}^{n+1} \right) &= 0 \end{aligned}$$

Variational mixed problem

Find $\mathbf{u} \in V$ and $p \in Q$ such that

$$\begin{aligned} \frac{1}{\Delta t^n} a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) &= \frac{1}{\Delta t^n} a(\mathbf{u}^{n+1/2}, \mathbf{v}), \quad \forall \mathbf{v} \in V, \\ b(\mathbf{u}, q) &= 0, \quad \forall q \in Q. \end{aligned}$$

with

$$Q = \{q \in L^2(\Omega)\},\$$

and

$$V = \{ \mathbf{v} = (v_1, v_2) \in (L^2(\Omega))^3 | \text{div}_{sw} (\mathbf{v}) \in L^2(\Omega) \},\$$

$$\begin{split} a(\mathbf{u}, \mathbf{v}) &= \int_{\Omega} H \mathbf{u} \cdot \mathbf{v} \, dx, \quad \forall \, \mathbf{u}, \mathbf{v} \in V, \\ b(\mathbf{v}, q) &= -\int_{\Omega} \operatorname{div}_{sw} \left(\mathbf{v} \right) q \, dx, \quad \forall \mathbf{v} \in V, \forall \, q \in Q, \end{split}$$

N.Aïssiouene

Numerical simulations of a Non-hydrostatic model

Correction step: Variational formulation

Correction step: solve

$$\begin{array}{rcl} H^{n+1} &=& H^{n+1/2} \\ (H\mathbf{u})^{n+1} + \Delta t \; \nabla_{\!\!sw} \; p^{n+1} &=& (H\mathbf{u})^{n+1/2} \\ & \operatorname{div}_{sw} \; \left(\mathbf{u}^{n+1}\right) &=& 0 \end{array}$$

Variational mixed problem

Find $\mathbf{u} \in V$ and $p \in Q$ such that

$$\frac{1}{\Delta t^n} a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \frac{1}{\Delta t^n} a(\mathbf{u}^{n+1/2}, \mathbf{v}), \quad \forall \mathbf{v} \in V,$$
$$b(\mathbf{u}, q) = 0, \quad \forall q \in Q.$$

Pressure equation

Shallow water version of the Laplacian equation

$$\Delta_{sw} p = \frac{1}{\Delta t^n} \operatorname{div}_{sw} \left(\mathbf{u}^{n+1/2} \right)$$

with

$$\Delta_{sw} p = \operatorname{div}_{sw} \left(\frac{1}{H} \nabla_{\!\! sw} p \right).$$

N.Aïssiouene

Numerical simulations of a Non-hydrostatic model

8/19

Introduction

pth-Averaged model

Strategy

Correction step: Variational formulation

Correction step: solve

$$\begin{aligned} H^{n+1} &= H^{n+1/2} \\ (H\mathbf{u})^{n+1} + \Delta t \, \nabla_{\!\! sw} \, p^{n+1} &= (H\mathbf{u})^{n+1/2} \\ \mathrm{div}_{sw} \, \left(\mathbf{u}^{n+1} \right) &= 0 \end{aligned}$$

Variational mixed problem

Find $\mathbf{u} \in V$ and $p \in Q$ such that

$$\frac{1}{\Delta t^n} a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \frac{1}{\Delta t^n} a(\mathbf{u}^{n+1/2}, \mathbf{v}), \quad \forall \mathbf{v} \in V,$$
$$b(\mathbf{u}, q) = 0, \quad \forall q \in Q.$$

Compatibility of the boundary conditions

Hyperbolic part

- Distinguish Fluvial flow / Torrential flow
- Consider a Riemann problem at the interface

Correction part

- Dirichlet or Neumann boundary condition for the pressure
- Slide boundary condition for the velocity

	Depth-Averaged model	Strategy	Numerical scheme	Conclusion and outlook
Numerica	l approximation			

Discrete problem

$$\begin{pmatrix} \frac{1}{\Delta t^n} A_H & B^t \\ B & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} \frac{1}{\Delta t^n} A_H U^{n+1/2} \\ 0 \end{pmatrix},$$

$$M_H = \left(\int_{\Omega} H\varphi_i \varphi_j dx\right)_{1 \le i, j \le N}, \quad A_H = \left(\begin{array}{ccc} M_H & 0 & 0\\ 0 & M_H & 0\\ 0 & 0 & M_H \end{array}\right).$$

and the two matrices B^t , B defined by

$$B^t = \left(\int_{\Omega} \nabla_{sw}(\phi_l)\varphi_i dx\right)_{1 \le l \le M, 1 \le i \le N}, B = -\left(\int_{\Omega} \operatorname{div}{}_{sw}(\varphi_j)\phi_l dx\right)_{1 \le l \le M, 1 \le j \le N}$$

	Depth-Averaged model	Strategy	Numerical scheme	Conclusion and outlook
2D finte	volume / Finite el	ement me	thod	

Choice of a stable pair of finite elements.

Figure : Representation of the dual mesh (finite volume mesh)

▶ Iterative method to solve the linear problem : Conjugate Gradient - Uzawa algorithm: $U^{(0)}, P^{(0)}given$, while $||BU^{(k)}|| > tolerance$:

solve
$$A_H U^{(k+1)} = A_H U^{n+1/2} - \Delta t B^t P^{(k)}$$

compute $P^{(k+1)} = P^{(k)} + \alpha B U^{(k)}$, $k > 0$

Properties of the scheme from the 1D scheme

Positivity of H

CFL condition of the kinetic scheme for the shallow water model \Rightarrow Positivity of $H^{n+1/2}$

Splitting scheme $\Rightarrow H^{n+1} = H^{n+1/2}$

The lake at rest

Lake at rest $\Leftrightarrow Hu = 0$ and $H + z_b = Cste$ Elliptic equation $\Rightarrow p = 0$ Satisfied by the hydrostatic part with the hydrostatic reconstruction.

- Discrete entropy in time
- Inf-sup condition

• N.A., M.-O.B., E.G., and J.S-M. A combined finite volume - finite element method for a dispersive shallow water system *Networks and Heterogeneous Media (NHM)*, pages 1-27, 2016.

• N.A., M.-O.B., E.G., and J.S-M. robust and stable numerical scheme for a depth-averaged Euler system. submitted, 2015

 $\bullet\,$ N.A., M.-O.B., E.G., and J.S-M. A two dimensional method for a dispersive shallow water model. In progress.

Numerical scheme

Numerical test for an analytical solution

Propagation of a solitary wave

$$\begin{split} H &= H_0 + a \left(\operatorname{sech} \left(\frac{x - ct}{l} \right) \right)^2 \\ H_0 &= 1.0 \text{ m}, a = 0.2 \text{ m}, c, l \in \mathbb{R} \end{split}$$

	Strategy	Numerical scheme	Results	
6				

Convergence rate

Propagation of a solitary wave

$$\begin{split} H &= H_0 + a \left(\operatorname{sech} \left(\frac{x - ct}{l} \right) \right)^2 \\ H_0 &= 1.0 \text{ m} , a = 0.3 \text{ m} , c, l \in \mathbb{R} \end{split}$$

		Strategy	Numerical scheme	Results	Conclusion and outloop
Mat due	interface				

Wet/dry interface

Pressure equation

$$\Delta_{sw} p = \frac{1}{\Delta t^n} \mathsf{div}_{sw} \left(\mathbf{u}^{n+1/2} \right) \quad \text{ with } \Delta_{sw} p = \mathsf{div}_{sw} \left(\frac{1}{max(H,\epsilon)} \nabla_{\!\! sw} p \right).$$

oth-Averaged model

Strategy

Thacker's solution

Add a source term for the momentum equation:

$$\frac{\partial Hw}{\partial t} + \frac{\partial Huw}{\partial x} + \frac{\partial Hvw}{\partial y} - 2p = \mathbf{Hs}.$$

solution :

$$\begin{aligned} H(x,y,t) &= \max(0,H_0 - \frac{\alpha}{2} \left(x - a\cos(\sqrt{r}t)\right)^2 - \frac{\beta}{2} \left(y - a\sin(\sqrt{r}t)\right)^2,)\\ u(x,y,t) &= -a\sqrt{r}\sin(\sqrt{r}t), \\ v(x,y,t) &= a\sqrt{r}\cos(\sqrt{r}t), \\ w(x,y,t) &= -\alpha a\sqrt{r}\sin(\sqrt{r}t)x + \alpha a\sqrt{r}\cos(\sqrt{r}t)y, \\ p(x,y,t) &= \frac{a^2\alpha r}{2}H, \\ s(x,y,t) &= \alpha ar\sin(\sqrt{r}t)x - \alpha ar\cos(\sqrt{r}t)y, \\ z_b(x,y) &= \frac{\alpha}{2}(x^2 + y^2), \end{aligned}$$

where $a,\alpha>0$ and $a\alpha<1, \quad r=\frac{\alpha g}{1-\alpha^2 a^2}.$

pth-Averaged model

Strategy

Numerical scheme

Results

Conclusion and outlook

Thacker's result

Thacker's test - Comparison with analytical solution

		Numerical scheme	Results	Conclusion and outlook
Converge	nce rate			

First and second order

Conclusion and outlook

Properties

Discrete entropy Equilibria

Validation of the scheme

Analytical solution Comparison with experimental data 1D

Two dimensional

Variational formulation Finite element method Iterative method

Outlook

Higher order Geophysical case : Tsunami ... Optimization

		Conclusion and outlook

Thank you !