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Aim: Modeling wave transformation in near-shore zones.

@ dispersive effects;
@ nonlinear effects;

Traditional method
Euler Equations — Asymptotic Equations — Discrete Equations.

New method
Euler Equations — Discrete Euler Equations — Discrete Asymptotic.

Sumatra 2004 tsunami reaching Undular tidal bore — Garonne

the coast of Thailand (from 2010 (from Bonneton et al.2011)
Madsen et al.2008)
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Euler system of equations

Euler system

Ot + udyu + wiyu + Oxp =0

Oew + udxw + wo,w + 0,p+g =0
Oxu—+90,w=0
O,u— 0w =0
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Parameters

a

nonlinearity parameter ¢ = @

do

dispersion parameter o =

New variables :

~ X . z \/gdo - n = d
X L7 z dO b) L b n a7 do bl
~ do - L 1 ~ p
u = 7“’ w = 77W7 p = 7)
av/gdo a+/gdo gdop

We express u in function of the depth-average velocity i using an

asymptotic expansion.
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Euler system of equations

Euler system

20wt + £2udu + 25?>wou + py =0

020w + 25%udw + e20°wi,w + p, +1=0 @)
O+ O0,w =0
O,u — 20w = 0

B.C. :

-inz=en: w=0m+ecudm, p=0

-inz=—d: w=—udd
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Hypothesis : 02 << 1

If we neglect terms of order o2 :

Saint-Venant equations

{nt+[h‘7]X=0
Et+ﬁﬁx+g77X:0
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[e]e]e] lo}

Hypothesis : 02 << 1

If we neglect terms of order o*:

Green-Naghdi equations

Nt + [hﬁ]x =

3 2
(1+T[h,d])ﬁt+ﬂﬁx—|—gnx—}7[(/73_hd>'p+ Q}

+dx<(h—d)P+Q> —

where P = i, — uXuX, Q = U(d0)xx — Ox(dO)x,
b d)a = —1 ( o+ 2 d u) + di (il + ).
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Boussinesq System. Hypothesis : 02 << 1, ¢ << 1

Weakly nonlinear models e=O(0?)

Neglecting terms of order o* and c0?:

Peregrine equations

Nt + [hl—l]x =0
2

d d
L_It A Uﬂx +g7]x+ Eatxx - E[dg]txx =0

~> There exists other Boussinesq type system: Beji-Nadaoka equations,
Madsen-Sorensen equations, Nwogu equations...
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Notations

e The matrices M, N and Q are the usual mass, derivation, and stiffness
matrices.

o For given columns vectors A = (a;j)o<i<n and B = (b;)o<i<n, we have
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RV x RNV 5 RN
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A Galerkin discretization of the Peregrine equations
o

Notations

e The matrices M, N and Q are the usual mass, derivation, and stiffness
matrices.

o For given columns vectors A = (a;)o<i<n and B = (b;)o<i<n, we have
introduced the operator ¢ :

RN x RN — RN
(A, B) — Ao B = (a,'b,')og,'glv

Peregrine equations

ME; + %(M(Ho U)+Ho(N0) + U<>(./\/H)> =0
(4)
SW — $(D; 0} =0

with {A; B} = Q(A20 B) + Ao (Q(Ao B) +2(Ac B) o (QA) — Bo (QA?).
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Non-dimensionnal discrete Euler Equations

2
E%MU+%(N(U2)+U<>(NU))+NP=O(5202) (5)
d d
EUQIMW +MP+T= 0O(%0?) (6)
d
NU+M_-W =0, (7)
d ) B
M—U—0?NW =0. (8)

The boundary conditions become
@ at the free surface
€

MW = %MEJr 3<N(E<>U)E<>(NU)+2U<>(NE)>, (9)

MP =0, (10)

@ at the bottom

MW = —;(/\/(Do U)-Do(ND) +2U<>(/\/D)>. (11)
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Asymptotic expansions

U(t,z) = U°(t) + O(c?), (12)

W = —(zKU° + [D; U°]) + O(c?). (13)
It is natural to introduce the following bracket, where K = M™IN

[A;B] = Ao (KB) + % (K(Ao B) = MY (Ao (NB)) +2M (B o (NA)))

2
U=U°- o2 <221C2 U° + z[D; U°]> +O(o*). (14)

Integrating through the depth and reversing the relation

U =0+ (D6 o (K?0) - g o (K[D; U])) + O(ed?,0*).  (15)
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oce

Expansions of U and P

U= U-0? (<222 %2> (K2U°) + <z+ g) o (K[D; UO]))
+ O(e0?,0). (16)

2 — -
P =¢cE — 2T +eo? <Z21CU + z[D; U]) + O(20?,e0*). (17)

E:. +[H; U] + B = O(ec?,0%),
D2
6

SW + UZM% ( o (K20) — goIC[D; U]) = O(e0?,0%).
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Expansions of U and P

E:. +[H; U] + B = O(ec?,0%),

o9 (D 2y D 7 2 4
SW—I—UME ?O(K U)—EOIC[D;U] = O(ec®,0").

B is a discretization of the Leibnitz rule.
Actually
B = 020O(A2%) + O(eo?, 0*).
Then, assuming Az = O(0),
B = O(c0?,0%).
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New numerical scheme for Peregrine equations

d _
IME + M[H; U] =0

d (D> , .- D _
SW—I—Mdt<6<>(ICU)—2<>IC[D,U]>O.
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New numerical scheme for Peregrine equations

%ME +M[H; U] =0
(18)

d (D> , - D -
SW+Mdt<6<>(ICU)2<>IC[D,U]>O.

Major differences in the schemes :

e discretization of [hi] in the continuity equation.

e Dispersive terms in the momentum equation : [D; U] vs {D; U}.
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Numerical experiments

Linear Peregrine equations

ne + [dd]x =0
d2 d (19)
Et +g77x + Eﬁtxx - E[dﬁ]txx =0

Exact solution for a constant bottom

n(t,x) = Acos(kx — wt), d@(t,x) = %Acos(kx — wt)

_ gdk
where w = ,/71“(20,2/3.




Numerical experiments
o0

Phase velocity

Numerical solution with d = 13, A= 0.05 and k = 27/15.

lew scheme 0.08[
lassical scheme
xact solution 0.06]

0.04 [\ /\\‘ /\\‘ /\\‘ /’\\‘ r"\\
| | |

Ampiitude
o

-0.08 -0.08
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Figure: Evolution of a traveling periodic wave for the two numerical schemes:
Left : Ax =3 (Nx =5). Right : A, =15 (N, = 10).
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oe

Grid convergence

New scheme -
Ak Classical scheme — |

logy el 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Iogw(Ax)

Figure: Grid convergence results for a periodic traveling wave.



Numerical experiments
o

linear shoaling gradient

generator

, P

150 850

Depth

lassical scheme
""" Exact solution 0.04
Ml o
: VA _ 5
g I 5 0
g i \‘ it :
\/VL'UU\‘UV W < 001
oo
) ;

Figure: Left: Shoaling wave profiles of Peregrine schemes (A, = 0.85). Right:
Theoretical envelope of the two numerical schemes (A, = 0.85).
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@ Adapt the method on other asymptotics models.

@ Adapt the method with other Euler discretization.
@ Discretize firstly Euler in z.

@ Deal with other Boundary conditions.
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