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Aim: Modeling wave transformation in near-shore zones.

dispersive effects;
nonlinear effects;

Traditional method

Euler Equations → Asymptotic Equations → Discrete Equations.

New method

Euler Equations → Discrete Euler Equations → Discrete Asymptotic.

Sumatra 2004 tsunami reaching
the coast of Thailand (from

Madsen et al.2008)

Undular tidal bore − Garonne
2010 (from Bonneton et al.2011)
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Euler system of equations

Euler system 

∂tu + u∂xu + w∂zu + ∂xp = 0

∂tw + u∂xw + w∂zw + ∂zp + g = 0

∂xu + ∂zw = 0

∂zu − ∂xw = 0

(1)

B.C. :

- in z = η: w = ∂tη + u∂xη, p = 0

- in z = −d : w = −u∂xd
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Parameters

nonlinearity parameter ε = a
d0

dispersion parameter σ = d0
L

New variables :

x̃ =
x

L
, z̃ =

z

d0
, t̃ =

√
gd0
L

t, η̃ =
η

a
, d̃ =

d

d0
,

ũ =
d0

a
√
gd0

u, w̃ =
L

a

1√
gd0

w , p̃ =
p

gd0ρ
,

We express u in function of the depth-average velocity ū using an
asymptotic expansion.
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Euler system of equations

Euler system

ε∂tu + ε2u∂xu + ε2σ2w∂zu + px = 0

εσ2∂tw + ε2σ2u∂xw + ε2σ2w∂zw + pz + 1 = 0

∂xu + ∂zw = 0

∂zu − σ2∂xw = 0

(2)

B.C. :

- in z = εη: w = ∂tη + εu∂xη, p = 0

- in z = −d : w = −u∂xd
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Hypothesis : σ2 << 1

If we neglect terms of order σ2 :

Saint-Venant equations {
ηt + [hū]x = 0

ūt + ūūx + gηx = 0
(3)



A Galerkin discretization of the Peregrine equations A new setting for deriving discrete asymptotic models Numerical experiments Conclusion and Perspectives

Hypothesis : σ2 << 1

If we neglect terms of order σ4:

Green-Naghdi equations



ηt + [hū]x = 0

(1 + τ [h, d ]) ūt + ūūx + gηx −
1

h

[(
h3

3
− h2d

2

)
P +

h2

2
Q
]
x

+ dx

(
(h − d)P +Q

)
= 0

where P = ūūxx − ūx ūx , Q = ū(dū)xx − ūx(dū)x ,

τ [h, d ]ū = − 1
h

(
h3

3 ūx + h2

2 dx ū
)
x

+ dx(hūx + dx ū).
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Boussinesq System. Hypothesis : σ2 << 1, ε << 1

Weakly nonlinear models ε=O(σ2)

Neglecting terms of order σ4 and εσ2:

Peregrine equations
ηt + [hū]x = 0

ūt + ūūx + gηx +
d2

6
ūtxx −

d

2
[dū]txx = 0

(3)

 There exists other Boussinesq type system: Beji-Nadaoka equations,
Madsen-Sorensen equations, Nwogu equations...
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Notations

• The matrices M, N and Q are the usual mass, derivation, and stiffness
matrices.
• For given columns vectors A = (ai )0≤i≤N and B = (bi )0≤i≤N , we have
introduced the operator � :

RN × RN → RN

(A,B) → A � B := (aibi )0≤i≤N

Peregrine equations
ηt + [hū]x = 0

ūt + ūūx + gηx +
d2

6
ūtxx −

d

2
[dū]txx = 0

(4)
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)
+ gNE +

d2

6
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)
= 0
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A Galerkin discretization of the Peregrine equations A new setting for deriving discrete asymptotic models Numerical experiments Conclusion and Perspectives

Notations

• The matrices M, N and Q are the usual mass, derivation, and stiffness
matrices.
• For given columns vectors A = (ai )0≤i≤N and B = (bi )0≤i≤N , we have
introduced the operator � :

RN × RN → RN

(A,B) → A � B := (aibi )0≤i≤N

Peregrine equations


MEt +

1

3

(
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)
+ gNE − 1

6
{D; Ūt} = 0

(4)

with
{A;B} = Q(A2 � B) + A � (Q(A � B) + 2(A � B) � (QA)− B � (QA2).



A Galerkin discretization of the Peregrine equations A new setting for deriving discrete asymptotic models Numerical experiments Conclusion and Perspectives

Notations

• The matrices M, N and Q are the usual mass, derivation, and stiffness
matrices.
• For given columns vectors A = (ai )0≤i≤N and B = (bi )0≤i≤N , we have
introduced the operator � :

RN × RN → RN

(A,B) → A � B := (aibi )0≤i≤N

Peregrine equations
MEt +

1

3

(
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Non-dimensionnal discrete Euler Equations

ε
d

dt
MU +

ε2

3

(
N (U2) + U � (NU)

)
+NP = O(ε2σ2) (5)

εσ2 d

dt
MW +

d

dz
MP + I = O(ε2σ2) (6)

NU +M d

dz
W = 0, (7)

M d

dz
U − σ2NW = 0. (8)

The boundary conditions become
at the free surface

MŴ =
d

dt
ME +

ε

3

(
N (E � Û)− E � (N Û) + 2Û � (NE )

)
, (9)

MP̂ = 0, (10)

at the bottom

MW̌ = −1

3

(
N (D � Ǔ)− D � (N Ǔ) + 2Ǔ � (ND)

)
. (11)
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Asymptotic expansions

U(t, z) = U0(t) +O(σ2), (12)

W = −(zKU0 + [D;U0]) +O(σ2). (13)

It is natural to introduce the following bracket, where K =M−1N

[A;B] = A � (KB) +
1

3

(
K(A � B)−M−1(A � (NB)) + 2M−1(B � (NA))

)

U =U0 − σ2

(
z2

2
K2U0 + z [D;U0]

)
+O(σ4). (14)

Integrating through the depth and reversing the relation

U0 = Ū + σ2

(
D2

6
� (K2Ū)− D

2
� (K[D; Ū])

)
+O(εσ2, σ4). (15)
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Expansions of U and P

U = Ū−σ2

((
z2

2
− D2

6

)
� (K2U0) +

(
z +

D

2

)
� (K[D;U0])

)
+O(εσ2, σ4). (16)

P = εE − zI + εσ2

(
z2

2
KŪ + z [D; Ū]

)
+O(ε2σ2, εσ4). (17)

Et + [H; Ū] + B = O(εσ2, σ4),

SW + σ2M d

dt

(
D2

6
� (K2Ū)− D

2
� K[D; Ū]

)
= O(εσ2, σ4).
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KŪ + z [D; Ū]
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(
D2

6
� (K2Ū)− D

2
� K[D; Ū]

)
= O(εσ2, σ4).

B is a discretization of the Leibnitz rule.
Actually

B = σ2O(∆2
x̃) +O(εσ2, σ4).

Then, assuming ∆x̃ = O(σ),

B = O(εσ2, σ4).
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U = Ū−σ2

((
z2

2
− D2

6

)
� (K2U0) +

(
z +

D

2

)
� (K[D;U0])

)
+O(εσ2, σ4). (16)

P = εE − zI + εσ2

(
z2

2
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New numerical scheme for Peregrine equations
d

dt
ME +M[H; Ū] = 0

SW +M d

dt

(
D2

6
� (K2Ū)− D

2
� K[D; Ū]

)
= 0.

Major differences in the schemes :

• discretization of in the continuity equation.

• Dispersive terms in the momentum equation : [D; Ū] vs {D; Ū}.
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New numerical scheme for Peregrine equations
d

dt
ME +M[H; Ū] = 0

SW +M d

dt

(
D2

6
� (K2Ū)− D

2
� K[D; Ū]

)
= 0.

(18)

Major differences in the schemes :

• discretization of [hū]x in the continuity equation.

• Dispersive terms in the momentum equation : [D; Ū] vs {D; Ū}.
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Linear Peregrine equations
ηt + [dū]x = 0

ūt + gηx +
d2

6
ūtxx −

d

2
[dū]txx = 0

(19)

Exact solution for a constant bottom

η(t, x) = A cos(kx − ωt), ū(t, x) =
ω

kd
A cos(kx − ωt)

where ω =
√

gdk
1+k2d2/3 .
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Phase velocity

Numerical solution with d = 13, A = 0.05 and k = 2π/15.
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Figure: Evolution of a traveling periodic wave for the two numerical schemes:
Left : ∆x = 3 (Nλ = 5). Right : ∆x = 1.5 (Nλ = 10).
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Grid convergence
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Figure: Grid convergence results for a periodic traveling wave.
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linear shoaling gradient
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Figure: Left: Shoaling wave profiles of Peregrine schemes (∆x = 0.85). Right:
Theoretical envelope of the two numerical schemes (∆x = 0.85).
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Conclusion and Perspectives

Future works

Adapt the method on other asymptotics models.

Adapt the method with other Euler discretization.

Discretize firstly Euler in z .

Deal with other Boundary conditions.
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