Discrete asymptotic equations for long wave propagation

S. Bellec, M. Colin and M. Ricchiuto

May, the 26th 2016

Context

Aim: Modeling wave transformation in near-shore zones.

- dispersive effects;
- nonlinear effects;

Sumatra 2004 tsunami reaching the coast of Thailand (from Madsen et al.2008)

Undular tidal bore − Garonne 2010 (from Bonneton et al.2011)

Context

Aim: Modeling wave transformation in near-shore zones.

- dispersive effects;
- nonlinear effects:

Traditional method

Euler Equations \rightarrow Asymptotic Equations \rightarrow Discrete Equations.

Sumatra 2004 tsunami reaching the coast of Thailand (from Madsen et al.2008)

Undular tidal bore − Garonne 2010 (from Bonneton et al.2011)

KORK ERRY ABY DE YOUR

Context

Aim: Modeling wave transformation in near-shore zones.

- dispersive effects;
- nonlinear effects;

Traditional method

Euler Equations \rightarrow Asymptotic Equations \rightarrow Discrete Equations.

New method

Euler Equations \rightarrow Discrete Euler Equations \rightarrow Discrete Asymptotic.

Sumatra 2004 tsunami reaching the coast of Thailand (from Madsen et al.2008)

Undular tidal bore − Garonne 2010 (from Bonneton et al.2011) $A \equiv 1 \pmod{4} \pmod{4} \pmod{4} \pmod{2} \pmod{2}$

 $2Q$

KORK STRAIN A BAR SHOP

Table of contents

¹ [A Galerkin discretization of the Peregrine equations](#page-5-0)

- [The asymptotics models](#page-6-0)
- **o** [The numerical scheme](#page-14-0)

² [A new setting for deriving discrete asymptotic models](#page-25-0)

- [Asymptotic expansions](#page-28-0)
- **•** [Peregrine equations](#page-37-0)

³ [Numerical experiments](#page-40-0) • [Linear dispersion](#page-42-0)

• [Linear Shoaling](#page-44-0)

Table of contents

¹ [A Galerkin discretization of the Peregrine equations](#page-5-0)

- [The asymptotics models](#page-6-0)
- **o** [The numerical scheme](#page-14-0)

² [A new setting for deriving discrete asymptotic models](#page-25-0) • [Asymptotic expansions](#page-28-0) • [Peregrine equations](#page-37-0)

[Numerical experiments](#page-40-0) · [Linear dispersion](#page-42-0) **• [Linear Shoaling](#page-44-0)**

[Conclusion and Perspectives](#page-45-0)

KORK STRAIN A BAR SHOP

Euler system of equations

Euler system

$$
\begin{cases} \partial_t u + u \partial_x u + w \partial_z u + \partial_x p = 0 \\ \partial_t w + u \partial_x w + w \partial_z w + \partial_z p + g = 0 \\ \partial_x u + \partial_z w = 0 \\ \partial_z u - \partial_x w = 0 \end{cases}
$$

B.C. :

- in
$$
z = \eta
$$
: $w = \partial_t \eta + u \partial_x \eta$, $p = 0$
- in $z = -d$: $w = -u \partial_x d$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

(1)

Parameters

nonlinearity parameter $\varepsilon = \frac{a}{d_0}$

dispersion parameter $\sigma = \frac{d_0}{L}$

New variables :

$$
\tilde{x} = \frac{x}{L}, \ \tilde{z} = \frac{z}{d_0}, \ \tilde{t} = \frac{\sqrt{gd_0}}{L}t, \ \tilde{\eta} = \frac{\eta}{a}, \ \tilde{d} = \frac{d}{d_0},
$$

$$
\tilde{u} = \frac{d_0}{a\sqrt{gd_0}}u, \ \tilde{w} = \frac{L}{a}\frac{1}{\sqrt{gd_0}}w, \ \tilde{p} = \frac{p}{gd_0p},
$$

KORK EX KEY CRACK

We express u in function of the depth-average velocity \bar{u} using an asymptotic expansion.

Euler system of equations

Euler system

$$
\begin{cases} \varepsilon \partial_t u + \varepsilon^2 u \partial_x u + \varepsilon^2 \sigma^2 w \partial_z u + p_x = 0 \\ \varepsilon \sigma^2 \partial_t w + \varepsilon^2 \sigma^2 u \partial_x w + \varepsilon^2 \sigma^2 w \partial_z w + p_z + 1 = 0 \\ \partial_x u + \partial_z w = 0 \\ \partial_z u - \sigma^2 \partial_x w = 0 \end{cases} \tag{2}
$$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q ⊙

B.C. :

- in
$$
z = \varepsilon \eta
$$
: $w = \partial_t \eta + \varepsilon u \partial_x \eta$, $p = 0$

$$
- \text{ in } z = -d: \quad w = -u \partial_x d
$$

Hypothesis : $\sigma^2 << 1$

If we neglect terms of order σ^2 :

Saint-Venant equations

$$
\begin{cases} \eta_t + [h\bar{u}]_x = 0 \\ \bar{u}_t + \bar{u}\bar{u}_x + g\eta_x = 0 \end{cases}
$$
 (3)

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q ⊙

Hypothesis : $\sigma^2 << 1$

If we neglect terms of order σ^4 :

Green-Naghdi equations

$$
\begin{cases} \eta_t + [h\bar{u}]_x = 0 \\ (1 + \tau[h, d]) \bar{u}_t + \bar{u}\bar{u}_x + g\eta_x - \frac{1}{h} \bigg[\left(\frac{h^3}{3} - \frac{h^2 d}{2} \right) \mathcal{P} + \frac{h^2}{2} \mathcal{Q} \bigg]_x \\ + d_x \bigg((h - d) \mathcal{P} + \mathcal{Q} \bigg) = 0 \end{cases}
$$

where $\mathcal{P} = \bar{u}\bar{u}_{xx} - \bar{u}_{x}\bar{u}_{x}$, $\mathcal{Q} = \bar{u}(d\bar{u})_{xx} - \bar{u}_{x}(d\bar{u})_{x}$, $\tau[h,d]\bar u=-\frac{1}{h}\left(\frac{h^3}{3}\right)$ $\frac{h^3}{3}\bar{u}_x + \frac{h^2}{2}$ $\frac{\hbar^2}{2}d_{\times}\bar{u}\bigg)$ $x + d_x(h\bar{u}_x + d_x\bar{u}).$

KORK STRAIN A BAR SHOP

Boussinesq System. Hypothesis : $\sigma^2 << 1$, $\varepsilon << 1$

Weakly nonlinear models $\varepsilon {=} \mathcal{O}(\sigma^2)$

Neglecting terms of order σ^4 and $\varepsilon \sigma^2$:

 $\bigg($ $\frac{1}{2}$ $\overline{\mathcal{L}}$ $\bar{u}_t + \bar{u}\bar{u}_x + g\eta_x + \frac{d^2}{6}$ $\frac{d^2}{6} \bar{u}_{\text{txx}} - \frac{d}{2}$ $\frac{a}{2}[d\bar{u}]_{\text{txx}}=0$

 \rightarrow There exists other Boussinesq type system: Beji-Nadaoka equations, Madsen-Sorensen equations, Nwogu equations...

Boussinesq System. Hypothesis : $\sigma^2 << 1$, $\varepsilon << 1$

Weakly nonlinear models $\varepsilon {=} \mathcal{O}(\sigma^2)$

Neglecting terms of order σ^4 and $\varepsilon \sigma^2$:

 \rightarrow There exists other Boussinesq type system: Beji-Nadaoka equations, Madsen-Sorensen equations, Nwogu equations...

Boussinesq System. Hypothesis : $\sigma^2 << 1$, $\varepsilon << 1$

Weakly nonlinear models $\varepsilon {=} \mathcal{O}(\sigma^2)$

Neglecting terms of order σ^4 and $\varepsilon \sigma^2$:

 \rightarrow There exists other Boussinesq type system: Beji-Nadaoka equations, Madsen-Sorensen equations, Nwogu equations...

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases} \eta_t + [h\bar{u}]_x = 0 \\ \bar{u}_t + \bar{u}\bar{u}_x + g\eta_x + \frac{d^2}{6}\bar{u}_{\text{txx}} - \frac{d}{2}[d\bar{u}]_{\text{txx}} = 0 \end{cases}
$$
(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases} \eta_t + [h\bar{u}]_x = 0 \\ \bar{u}_t + \bar{u}\bar{u}_x + g\eta_x + \frac{d^2}{6}\bar{u}_{\text{txx}} - \frac{d}{2}[d\bar{u}]_{\text{txx}} = 0 \end{cases}
$$
(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases}\n\mathcal{M}E_t + [h\bar{u}]_x = 0 \\
\mathcal{M}\bar{U}_t + \bar{u}\bar{u}_x + g\eta_x + \frac{d^2}{6}\bar{u}_{txx} - \frac{d}{2}[d\bar{u}]_{txx} = 0\n\end{cases}
$$
\n(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases}\n\mathcal{M}E_t + [h\bar{u}]_x = 0 \\
\mathcal{M}\bar{U}_t + \bar{u}\bar{u}_x + g\eta_x + \frac{d^2}{6}\bar{u}_{txx} - \frac{d}{2}[d\bar{u}]_{txx} = 0\n\end{cases}
$$
\n(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

$$
\begin{cases}\n\mathcal{M}E_t + [h\bar{u}]_x = 0 \\
\mathcal{M}\bar{U}_t + \frac{1}{3} \left(\mathcal{N}(\bar{U}^2) + \bar{U} \diamond (\mathcal{N}\bar{U}) \right) + g\mathcal{N}E + \frac{d^2}{6} \bar{u}_{txx} - \frac{d}{2} [d\bar{u}]_{txx} = 0 \\
\end{cases}
$$
\n(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

$$
\begin{cases}\n\mathcal{M}E_t + [h\bar{u}]_x = 0 \\
\mathcal{M}\bar{U}_t + \frac{1}{3} \left(\mathcal{N}(\bar{U}^2) + \bar{U} \diamond (\mathcal{N}\bar{U}) \right) + g\mathcal{N}E + \frac{d^2}{6} \bar{u}_{\text{txx}} - \frac{d}{2} [d\bar{u}]_{\text{txx}} = 0 \\
\end{cases}
$$
\n(4)

Notations

- The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.
- For given columns vectors $A = (a_i)_{0 \leq i \leq N}$ and $B = (b_i)_{0 \leq i \leq N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

(A, B) \to A \diamond B := $(a_i b_i)_{0 \leq i \leq N}$

$$
\begin{cases}\n\mathcal{M}E_t + \frac{1}{3} \left(2\mathcal{N}(H \circ \bar{U}) + H \circ (\mathcal{N}\bar{U}) + \bar{U} \circ (\mathcal{N}H) \right) = 0 \\
\mathcal{M}\bar{U}_t + \frac{1}{3} \left(\mathcal{N}(\bar{U}^2) + \bar{U} \circ (\mathcal{N}\bar{U}) \right) + g\mathcal{N}E + \frac{d^2}{6} \bar{u}_{\text{txx}} - \frac{d}{2} [d\bar{u}]_{\text{txx}} = 0 \\
\end{cases}
$$
\n(4)

Notations

- The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.
- For given columns vectors $A = (a_i)_{0 \leq i \leq N}$ and $B = (b_i)_{0 \leq i \leq N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

(A, B) \to A \diamond B := $(a_i b_i)_{0 \leq i \leq N}$

$$
\begin{cases}\n\mathcal{M}E_t + \frac{1}{3} \left(2\mathcal{N}(H \diamond \bar{U}) + H \diamond (\mathcal{N}\bar{U}) + \bar{U} \diamond (\mathcal{N}H) \right) = 0 \\
\mathcal{M}\bar{U}_t + \frac{1}{3} \left(\mathcal{N}(\bar{U}^2) + \bar{U} \diamond (\mathcal{N}\bar{U}) \right) + g\mathcal{N}E + \frac{d^2}{6} \bar{u}_{\text{txx}} - \frac{d}{2} [d\bar{u}]_{\text{txx}} = 0 \\
\end{cases}
$$
\n(4)

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases}\n\mathcal{M}E_t + \frac{1}{3} \left(2\mathcal{N}(H \diamond \bar{U}) + H \diamond (\mathcal{N}\bar{U}) + \bar{U} \diamond (\mathcal{N}H) \right) = 0 \\
M\bar{U}_t + \frac{1}{3} \left(\mathcal{N}(\bar{U}^2) + \bar{U} \diamond (\mathcal{N}\bar{U}) \right) + g\mathcal{N}E - \frac{1}{6} \{D; \bar{U}_t\} = 0\n\end{cases}
$$
\n(4)

with

$$
\{A;B\}=\mathcal{Q}(A^2\circ B)+A\circ(\mathcal{Q}(A\circ B)+2(A\circ B)\circ(\mathcal{Q}A)-B\circ(\mathcal{Q}A^2).
$$

Notations

• The matrices M, N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \leq i \leq N}$ and $B = (b_i)_{0 \leq i \leq N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

(A, B) \to $A \diamond B := (a_i b_i)_{0 \leq i \leq N}$

Peregrine equations $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $ME_t + \frac{1}{2}$ 3 $\Big(2{\cal N}(H \diamond \bar{U}) + H \diamond ({\cal N}\bar{U}) + \bar{U} \diamond ({\cal N}H) \Big) = 0$ $M\bar{U}_t + \frac{1}{2}$ 3 $\left(N(\bar{U}^2) + \bar{U} \circ (N\bar{U})\right) + gN E - \frac{1}{6}$ $\frac{1}{6}$ {*D*; \bar{U}_t } = 0 (4)

with

 ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$ ${A; B} = \mathcal{Q}(A^2 \circ B) + A \circ (\mathcal{Q}(A \circ B) + 2(A \circ B) \circ (\mathcal{Q}A) - B \circ (\mathcal{Q}A^2).$

Notations

• The matrices M , N and Q are the usual mass, derivation, and stiffness matrices.

• For given columns vectors $A = (a_i)_{0 \le i \le N}$ and $B = (b_i)_{0 \le i \le N}$, we have introduced the operator \diamond :

$$
\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N
$$

$$
(A, B) \to A \diamond B := (a_i b_i)_{0 \le i \le N}
$$

Peregrine equations

$$
\begin{cases}\n\mathcal{M}E_t + \frac{1}{3} \left(2\mathcal{N}(H \diamond \bar{U}) + H \diamond (\mathcal{N}\bar{U}) + \bar{U} \diamond (\mathcal{N}H) \right) = 0 \\
\mathcal{S}W - \frac{1}{6} \{ D; \bar{U}_t \} = 0\n\end{cases}
$$
\n(4)

with $\{A; B\} = \mathcal{Q}(A^2 \diamond B) + A \diamond (\mathcal{Q}(A \diamond B) + 2(A \diamond B) \diamond (\mathcal{Q}A) - B \diamond (\mathcal{Q}A^2).$

KORK STRAIN A BAR SHOP

Table of contents

¹ [A Galerkin discretization of the Peregrine equations](#page-5-0)

- [The asymptotics models](#page-6-0)
- **[The numerical scheme](#page-14-0)**

² [A new setting for deriving discrete asymptotic models](#page-25-0)

- [Asymptotic expansions](#page-28-0)
- **•** [Peregrine equations](#page-37-0)

[Numerical experiments](#page-40-0) · [Linear dispersion](#page-42-0) **• [Linear Shoaling](#page-44-0)**

[Conclusion and Perspectives](#page-45-0)

Non-dimensionnal discrete Euler Equations

$$
\varepsilon \frac{d}{dt} \mathcal{M}U + \frac{\varepsilon^2}{3} \left(\mathcal{N}(U^2) + U \diamond (\mathcal{N}U) \right) + \mathcal{N}P = \mathcal{O}(\varepsilon^2 \sigma^2) \tag{5}
$$

$$
\varepsilon \sigma^2 \frac{d}{dt} \mathcal{M}W + \frac{d}{dz} \mathcal{M}P + \mathcal{I} = \mathcal{O}(\varepsilon^2 \sigma^2)
$$
 (6)

$$
\mathcal{N}U + \mathcal{M}\frac{d}{dz}W = 0,\tag{7}
$$

$$
\mathcal{M}\frac{d}{dz}U - \sigma^2 \mathcal{N}W = 0.
$$
 (8)

The boundary conditions become

• at the free surface

$$
\mathcal{M}\hat{W} = \frac{d}{dt}\mathcal{M}E + \frac{\varepsilon}{3}\bigg(\mathcal{N}(E \diamond \hat{U}) - E \diamond (\mathcal{N}\hat{U}) + 2\hat{U} \diamond (\mathcal{N}E)\bigg), \tag{9}
$$

$$
\mathcal{M}\hat{P} = 0, \tag{10}
$$

at the bottom

$$
\mathcal{M}\breve{W} = -\frac{1}{3}\bigg(\mathcal{N}(D \diamond \breve{U}) - D \diamond (\mathcal{N}\breve{U}) + 2\breve{U} \diamond (\mathcal{N}D)\bigg). \tag{11}
$$

Non-dimensionnal discrete Euler Equations

$$
\varepsilon \frac{d}{dt} \mathcal{M}U + \frac{\varepsilon^2}{3} \left(\mathcal{N}(U^2) + U \diamond (\mathcal{N}U) \right) + \mathcal{N}P = \mathcal{O}(\varepsilon^2 \sigma^2) \tag{5}
$$

$$
\varepsilon \sigma^2 \frac{d}{dt} \mathcal{M}W + \frac{d}{dz} \mathcal{M}P + \mathcal{I} = \mathcal{O}(\varepsilon^2 \sigma^2)
$$
 (6)

$$
\mathcal{N}U + \mathcal{M}\frac{d}{dz}W = 0, \tag{7}
$$

$$
\mathcal{M}\frac{d}{dz}U - \sigma^2 \mathcal{N}W = 0.
$$
 (8)

The boundary conditions become

a at the free surface

$$
\mathcal{M}\hat{W} = \frac{d}{dt}\mathcal{M}E + \frac{\varepsilon}{3}\bigg(\mathcal{N}(E \diamond \hat{U}) - E \diamond (\mathcal{N}\hat{U}) + 2\hat{U} \diamond (\mathcal{N}E)\bigg), \tag{9}
$$

$$
\mathcal{M}\hat{P} = 0, \tag{10}
$$

• at the bottom

$$
\mathcal{M}\check{W}=-\frac{1}{3}\bigg(\mathcal{N}(D\diamond\check{U})-D\diamond(\check{W}\check{U})+2\check{U}\diamond(\check{N}D)\bigg).
$$
 (11)

Asymptotic expansions

$$
U(t,z) = U^0(t) + \mathcal{O}(\sigma^2), \qquad (12)
$$

$$
W = -(z\mathcal{K}U^0 + [D; U^0]) + \mathcal{O}(\sigma^2). \tag{13}
$$

It is natural to introduce the following bracket, where $K = \mathcal{M}^{-1}\mathcal{N}$

$$
[A;B] = A \diamond (KB) + \frac{1}{3} \left(\mathcal{K}(A \diamond B) - \mathcal{M}^{-1}(A \diamond (NB)) + 2\mathcal{M}^{-1}(B \diamond (\mathcal{N}A)) \right)
$$

$$
U = U0 - \sigma2 \left(\frac{z2}{2} \mathcal{K}2 U0 + z[D; U0] \right) + \mathcal{O}(\sigma4). \tag{14}
$$

$$
U^{0} = \bar{U} + \sigma^{2} \left(\frac{D^{2}}{6} \diamond (\mathcal{K}^{2} \bar{U}) - \frac{D}{2} \diamond (\mathcal{K}[D; \bar{U}]) \right) + \mathcal{O}(\varepsilon \sigma^{2}, \sigma^{4}). \tag{15}
$$

Asymptotic expansions

$$
U(t,z) = U^0(t) + \mathcal{O}(\sigma^2), \qquad (12)
$$

$$
W = -(z\mathcal{K}U^0 + [D;U^0]) + \mathcal{O}(\sigma^2). \tag{13}
$$

It is natural to introduce the following bracket, where $K = \mathcal{M}^{-1}\mathcal{N}$

$$
[A;B] = A \diamond (KB) + \frac{1}{3} \left(\mathcal{K}(A \diamond B) - \mathcal{M}^{-1}(A \diamond (\mathcal{N}B)) + 2\mathcal{M}^{-1}(B \diamond (\mathcal{N}A)) \right)
$$

$$
U = U0 - \sigma2 \left(\frac{z2}{2} \mathcal{K}2 U0 + z[D; U0] \right) + \mathcal{O}(\sigma4). \tag{14}
$$

$$
U^0 = \bar{U} + \sigma^2 \left(\frac{D^2}{6} \diamond (\mathcal{K}^2 \bar{U}) - \frac{D}{2} \diamond (\mathcal{K}[D; \bar{U}]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4). \tag{15}
$$

Asymptotic expansions

$$
U(t,z) = U^0(t) + \mathcal{O}(\sigma^2), \qquad (12)
$$

$$
W = -(z\mathcal{K}U^0 + [D;U^0]) + \mathcal{O}(\sigma^2). \tag{13}
$$

It is natural to introduce the following bracket, where $K = \mathcal{M}^{-1}\mathcal{N}$

$$
[A;B] = A \diamond (KB) + \frac{1}{3} \left(\mathcal{K}(A \diamond B) - \mathcal{M}^{-1}(A \diamond (\mathcal{N}B)) + 2\mathcal{M}^{-1}(B \diamond (\mathcal{N}A)) \right)
$$

$$
U = U^0 - \sigma^2 \left(\frac{z^2}{2} \mathcal{K}^2 U^0 + z[D; U^0] \right) + \mathcal{O}(\sigma^4). \tag{14}
$$

$$
U^{0} = \bar{U} + \sigma^{2} \left(\frac{D^{2}}{6} \diamond (\mathcal{K}^{2} \bar{U}) - \frac{D}{2} \diamond (\mathcal{K}[D; \bar{U}]) \right) + \mathcal{O}(\varepsilon \sigma^{2}, \sigma^{4}). \tag{15}
$$

Asymptotic expansions

$$
U(t,z) = U^0(t) + \mathcal{O}(\sigma^2), \qquad (12)
$$

$$
W = -(z\mathcal{K}U^0 + [D;U^0]) + \mathcal{O}(\sigma^2). \tag{13}
$$

It is natural to introduce the following bracket, where $K = \mathcal{M}^{-1}\mathcal{N}$

$$
[A;B] = A \diamond (KB) + \frac{1}{3} \left(\mathcal{K}(A \diamond B) - \mathcal{M}^{-1}(A \diamond (\mathcal{N}B)) + 2\mathcal{M}^{-1}(B \diamond (\mathcal{N}A)) \right)
$$

$$
U = U^0 - \sigma^2 \left(\frac{z^2}{2} \mathcal{K}^2 U^0 + z[D; U^0] \right) + \mathcal{O}(\sigma^4). \tag{14}
$$

$$
U^0 = \bar{U} + \sigma^2 \left(\frac{D^2}{6} \diamond (\mathcal{K}^2 \bar{U}) - \frac{D}{2} \diamond (\mathcal{K}[D; \bar{U}]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4). \tag{15}
$$

Expansions of U and P

$$
U = \bar{U} - \sigma^2 \left(\left(\frac{z^2}{2} - \frac{D^2}{6} \right) \diamond (\mathcal{K}^2 U^0) + \left(z + \frac{D}{2} \right) \diamond (\mathcal{K}[D; U^0]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$
 (16)

$$
P = \varepsilon E - z\mathcal{I} + \varepsilon \sigma^2 \left(\frac{z^2}{2} \mathcal{K} \bar{U} + z[D; \bar{U}] \right) + \mathcal{O}(\varepsilon^2 \sigma^2, \varepsilon \sigma^4). \tag{17}
$$

$$
E_t + [H; \bar{U}] + B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4),
$$

$$
SW + \sigma^2 \mathcal{M} \frac{d}{dt} \left(\frac{D^2}{6} \diamond (K^2 \bar{U}) - \frac{D}{2} \diamond K[D; \bar{U}] \right) = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Expansions of U and P

$$
U = \bar{U} - \sigma^2 \left(\left(\frac{z^2}{2} - \frac{D^2}{6} \right) \diamond (\mathcal{K}^2 U^0) + \left(z + \frac{D}{2} \right) \diamond (\mathcal{K}[D; U^0]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$
 (16)

$$
P = \varepsilon E - z\mathcal{I} + \varepsilon \sigma^2 \left(\frac{z^2}{2} \mathcal{K} \bar{U} + z[D; \bar{U}] \right) + \mathcal{O}(\varepsilon^2 \sigma^2, \varepsilon \sigma^4). \tag{17}
$$

$$
E_t + [H; \bar{U}] + B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4),
$$

$$
SW + \sigma^2 \mathcal{M} \frac{d}{dt} \left(\frac{D^2}{6} \diamond (K^2 \bar{U}) - \frac{D}{2} \diamond K[D; \bar{U}] \right) = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Expansions of U and P

$$
U = \bar{U} - \sigma^2 \left(\left(\frac{z^2}{2} - \frac{D^2}{6} \right) \diamond (\mathcal{K}^2 U^0) + \left(z + \frac{D}{2} \right) \diamond (\mathcal{K}[D; U^0]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$
\n(16)

$$
P = \varepsilon E - z\mathcal{I} + \varepsilon \sigma^2 \left(\frac{z^2}{2} \mathcal{K} \bar{U} + z[D; \bar{U}] \right) + \mathcal{O}(\varepsilon^2 \sigma^2, \varepsilon \sigma^4). \tag{17}
$$

$$
E_t + [H; \bar{U}] + B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4),
$$

$$
SW + \sigma^2 \mathcal{M} \frac{d}{dt} \left(\frac{D^2}{6} \diamond (K^2 \bar{U}) - \frac{D}{2} \diamond K[D; \bar{U}] \right) = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$

B is a discretization of the Leibnitz rule. Actually

$$
B=\sigma^2\mathcal{O}(\Delta_{\tilde{x}}^2)+\mathcal{O}(\varepsilon\sigma^2,\sigma^4).
$$

Then, assuming $\Delta_{\tilde{x}} = \mathcal{O}(\sigma)$,

$$
B=\mathcal{O}(\varepsilon\sigma^2,\sigma^4)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

Expansions of U and P

$$
U = \bar{U} - \sigma^2 \left(\left(\frac{z^2}{2} - \frac{D^2}{6} \right) \diamond (\mathcal{K}^2 U^0) + \left(z + \frac{D}{2} \right) \diamond (\mathcal{K}[D; U^0]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$
\n(16)

$$
P = \varepsilon E - z\mathcal{I} + \varepsilon \sigma^2 \left(\frac{z^2}{2} \mathcal{K} \bar{U} + z[D; \bar{U}] \right) + \mathcal{O}(\varepsilon^2 \sigma^2, \varepsilon \sigma^4). \tag{17}
$$

$$
E_t + [H; \bar{U}] + B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4),
$$

$$
SW + \sigma^2 \mathcal{M} \frac{d}{dt} \left(\frac{D^2}{6} \diamond (K^2 \bar{U}) - \frac{D}{2} \diamond K[D; \bar{U}] \right) = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$

 B is a discretization of the Leibnitz rule. Actually

$$
B=\sigma^2\mathcal{O}(\Delta_{\tilde{x}}^2)+\mathcal{O}(\varepsilon\sigma^2,\sigma^4).
$$

Then, assuming $\Delta_{\tilde{x}} = \mathcal{O}(\sigma)$,

 $B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).$

Expansions of U and P

$$
U = \bar{U} - \sigma^2 \left(\left(\frac{z^2}{2} - \frac{D^2}{6} \right) \diamond (\mathcal{K}^2 U^0) + \left(z + \frac{D}{2} \right) \diamond (\mathcal{K}[D; U^0]) \right) + \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$
\n(16)

$$
P = \varepsilon E - z\mathcal{I} + \varepsilon \sigma^2 \left(\frac{z^2}{2} \mathcal{K} \bar{U} + z[D; \bar{U}] \right) + \mathcal{O}(\varepsilon^2 \sigma^2, \varepsilon \sigma^4). \tag{17}
$$

$$
E_t + [H; \bar{U}] + B = \mathcal{O}(\varepsilon \sigma^2, \sigma^4),
$$

$$
SW + \sigma^2 \mathcal{M} \frac{d}{dt} \left(\frac{D^2}{6} \diamond (K^2 \bar{U}) - \frac{D}{2} \diamond K[D; \bar{U}] \right) = \mathcal{O}(\varepsilon \sigma^2, \sigma^4).
$$

 B is a discretization of the Leibnitz rule. Actually

$$
B=\sigma^2\mathcal{O}(\Delta_{\tilde{x}}^2)+\mathcal{O}(\varepsilon\sigma^2,\sigma^4).
$$

Then, assuming $\Delta_{\tilde{x}} = \mathcal{O}(\sigma)$,

$$
B=\mathcal{O}(\varepsilon\sigma^2,\sigma^4).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

New numerical scheme for Peregrine equations

$$
\begin{cases}\n\frac{d}{dt}\mathcal{M}E + \mathcal{M}[H; \bar{U}] = 0 \\
SW + \mathcal{M}\frac{d}{dt}\left(\frac{D^2}{6}\diamond (\mathcal{K}^2\bar{U}) - \frac{D}{2}\diamond \mathcal{K}[D; \bar{U}]\right) = 0.\n\end{cases}
$$

• discretization of in the continuity equation.

• Dispersive terms in the momentum equation : $[D; \overline{U}]$ vs $\{D; \overline{U}\}$.

New numerical scheme for Peregrine equations

$$
\begin{cases}\n\frac{d}{dt}\mathcal{M}E + \mathcal{M}[H; \bar{U}] = 0 \\
SW + \mathcal{M}\frac{d}{dt}\left(\frac{D^2}{6}\diamond(\mathcal{K}^2\bar{U}) - \frac{D}{2}\diamond\mathcal{K}[D; \bar{U}]\right) = 0.\n\end{cases}
$$
\n(18)

KORK ERKER ADE YOUR

Major differences in the schemes :

• discretization of $\left[\overline{h\bar{u}}\right]_{x}$ in the continuity equation.

• Dispersive terms in the momentum equation : $[D; U]$ vs $\{D; U\}$.

New numerical scheme for Peregrine equations

$$
\begin{cases}\n\frac{d}{dt}\mathcal{M}E + \mathcal{M}[H; \bar{U}] = 0 \\
SW + \mathcal{M}\frac{d}{dt}\left(\frac{D^2}{6}\diamond(\mathcal{K}^2\bar{U}) - \frac{D}{2}\diamond\mathcal{K}[D; \bar{U}]\right) = 0.\n\end{cases}
$$
\n(18)

KORK ERKER ADE YOUR

Major differences in the schemes :

- discretization of $[\hbar \bar{u}]_x$ in the continuity equation.
- Dispersive terms in the momentum equation : $[D; \overline{U}]$ vs $\{D; \overline{U}\}$.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 $2Q$

Table of contents

¹ [A Galerkin discretization of the Peregrine equations](#page-5-0)

- [The asymptotics models](#page-6-0)
- **[The numerical scheme](#page-14-0)**

² [A new setting for deriving discrete asymptotic models](#page-25-0) • [Asymptotic expansions](#page-28-0) • [Peregrine equations](#page-37-0)

³ [Numerical experiments](#page-40-0) **•** [Linear dispersion](#page-42-0) **• [Linear Shoaling](#page-44-0)**

[Conclusion and Perspectives](#page-45-0)

Linear Peregrine equations

$$
\begin{cases} \eta_t + [d\bar{u}]_x = 0 \\ \bar{u}_t + g\eta_x + \frac{d^2}{6}\bar{u}_{txx} - \frac{d}{2}[d\bar{u}]_{txx} = 0 \end{cases}
$$
(19)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Exact solution for a constant bottom

$$
\eta(t,x) = A\cos(kx - \omega t), \ \bar{u}(t,x) = \frac{\omega}{kd}A\cos(kx - \omega t)
$$

where
$$
\omega = \sqrt{\frac{gdk}{1 + k^2 d^2/3}}
$$
.

Phase velocity

Numerical solution with $d = 13$, $A = 0.05$ and $k = 2\pi/15$.

Figure: Evolution of a traveling periodic wave for the two numerical schemes: Left : $\Delta_{x} = 3$ ($N_{\lambda} = 5$). Right : $\Delta_{x} = 1.5$ ($N_{\lambda} = 10$).

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) ÷. 2990

Grid convergence

Figure: Grid convergence results for a periodic traveling wave.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

linear shoaling gradient

Figure: Left: Shoaling wave profiles of Peregrine schemes ($\Delta_x = 0.85$). Right: Theoretical envelope of the two numerical schemes ($\Delta_x = 0.85$).

Table of contents

¹ [A Galerkin discretization of the Peregrine equations](#page-5-0)

- [The asymptotics models](#page-6-0)
- **[The numerical scheme](#page-14-0)**

² [A new setting for deriving discrete asymptotic models](#page-25-0) • [Asymptotic expansions](#page-28-0) • [Peregrine equations](#page-37-0)

[Numerical experiments](#page-40-0) · [Linear dispersion](#page-42-0) **• [Linear Shoaling](#page-44-0)**

4 [Conclusion and Perspectives](#page-45-0)

KORK STRAIN A BAR SHOP

KORK STRAIN A BAR SHOP

Conclusion and Perspectives

- Adapt the method on other asymptotics models.
- Adapt the method with other Euler discretization.
- Discretize firstly Euler in z.
- Deal with other Boundary conditions.

KORK STRAIN A BAR SHOP

Conclusion and Perspectives

- Adapt the method on other asymptotics models.
- Adapt the method with other Euler discretization.
- Discretize firstly Euler in z.
- Deal with other Boundary conditions.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Conclusion and Perspectives

- Adapt the method on other asymptotics models.
- Adapt the method with other Euler discretization.
- Discretize firstly Euler in z.
- Deal with other Boundary conditions.

KORK STRAIN A BAR SHOP

Conclusion and Perspectives

- Adapt the method on other asymptotics models.
- Adapt the method with other Euler discretization.
- Discretize firstly Euler in z.
- Deal with other Boundary conditions.

THANK YOU

イロト イ母 トイミト イミト ニヨー りんぴ