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1. Viscoplastic materials and granular rheology
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Viscoplastic materials

Viscoplastic materials are characterized by

Nonlinear relation between stress and strain rate

Irreversible deformations inducing dissipation

Fig.: Snow avalanche, Mud flow
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Incompressible viscoplastic materials

Mathematical description

. time t, position x ∈ Ω ⊂ RN ,

. velocity field u(t, x) ∈ RN ,

. stress tensor σ(t, x) symmetric N × N matrix,

. force field f (t, x) ∈ RN .

. Incompressibility

div u = 0,

. Momentum conservation

∂tu + u · ∇u − div σ = f ,

. Initial condition

u(0, x) = u0(x),

. Neumann boundary condition (for example)

σn = 0 on ∂Ω.
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Incompressible viscoplastic materials : rheology

. The rheology gives a relation between the stress tensor σ and the strain rate Du
defined by (Du)ij = 1

2
(∂i uj + ∂jui ).

. A rheology with yield stress is characterized by

σ = −pIN + 2νDu + κ Du
‖Du‖ ,

where ‖A‖2 = 1
2

PN
i,j=1 A2

ij , p is the pressure, κ ≥ 0 is the yield stress, and ν ≥ 0 is the
viscosity.
. Note that Du/‖Du‖ is multivalued : when Du = 0, it can be any trace-free symmetric
matrix with norm less or equal to one. It corresponds to plug zones or static zones
(where there is a solid rotation movement).
Thus at locations (t, x) such that Du(t, x) = 0, σ(t, x) just needs to satisfy
‖σ(t, x) + p(t, x)IN‖ ≤ κ(t, x).
. A relevant rheology for granular materials is with a Drucker-Prager yield stress,

κ = µsp+,

where p+ is the positive part of the pressure, and µs > 0 is the internal friction, a
coefficient characterizing the material.
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2. Static/flowing interface
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Static/flowing interface

. In the previous flow description, the static (solid) domain where Du = 0 and the
flowing (fluid) domain where Du 6= 0 are not defined explicitly. They evolve according to
the equations set on the whole domain.

How to describe the dynamics of the static/flowing interface (also called yield surface) ?

. For a mass flowing down a topography, a relevant configuration is as follows

x

B(X) b

h

X

U(Z)

free surface

interface
topography

flowing phase

static phaseθ(X)
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Static/flowing interface

. Models for the dynamics of the static/flowing interface are proposed for example by
Aranson & Tsimring 02, Khakhar et al. 01... A review of the existing models is given in
Iverson & Ouyang 15.

. They are based on phenomenological equations or on strong assumptions such as
specified velocity profile, or reducing the flow to a sliding block. These models make a
thin-layer assumption.

. For example, the BCRE model states that

∂tb = g cos θ(µs−| tan θ|)
∂Z U

,

where g is the gravity constant, θ is the slope angle, and U is the downslope component
of the velocity. In this model the velocity is assumed to be linear in terms of the normal
variable Z . Then one needs an equation for the evolution of the slope ∂Z U.
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3. The new model
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Static/flowing interface : the new model

In a series of work, we have derived and evaluated a model for the dynamics of the
static/flowing interface, with the following features/assumptions

It is derived rigorously (i.e. without heuristics) from the Drucker-Prager viscoplastic
model by asymptotic expansion

Thin-layer assumption, small topography curvature, small viscosity

The internal friction is close to the slope µs ∼ | tan θ| (gravity and friction more or
less compensate, letting the possibility to have the static and flowing phases)

The velocity is small (it is possible because of the previous assumption)

The pressure is convex with respect to the normal variable Z (condition of stability
of the double layer static/flowing configuration)

No specific velocity profile (not a depth-average model !)

New nonlinear non-hydrostatic pressure correction
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The new model for the static/flowing interface dynamics

We denote by U(t,X ,Z) the velocity in the downslope direction, h(t,X ) the width,
b(t,X ) the interface position, and θ(X ) < 0 the topography slope angle.

Theorem [Bouchut, Ionescu, Mangeney, 2016]
With the previous assumptions, the solution to the viscoplastic model in the
configuration between topography and free surface (with suitable boundary
conditions) satisfies

∂t

“
h − h2

2
dXθ

”
+ ∂X

“R h

0
UdZ

”
= 0,

∂Z U > 0 for Z > b(t,X ),

∂tU + S − ∂Z (ν∂Z U) = O(ε2) for Z > b(t,X ), (1)

with S = g(sin θ + ∂X (h cos θ))− ∂Z (µsp),
the boundary conditions

ν∂Z U = 0 at Z = h(t,X ), (2)
U = 0 at Z = b(t,X ), (3)

ν∂Z U = 0 at Z = b(t,X ), (4)
the static equilibrium condition

S(t,X , b(t,X )) ≥ 0, (5)
and the nonhydrostatic pressure

p = g
“

cos θ + sin θ∂X h − 2| sin θ| ∂X U
|∂Z U|

”
×(h − Z) + O(ε3), for Z > b(t,X ).
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Typical velocity profile

For each time t > 0, the velocity profile looks like on the figure below.

Z

U

0 b(t,X ) h(t,X )
——

Fig.: Typical velocity profile with respect to Z at fixed time t > 0, satisfying the boundary
conditions. The velocity vanishes over [0, b(t,X )] and increases on (b(t,X ), h(t,X )).

Initially we can take for example a profile with a flat part for Z < b0, and a linear part
for Z > b0. The boundary conditions are not necessarily satisfied initially.
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Comments on the model for the static/flowing interface dynamics

The problem has to be solved for b(t,X ) < Z < h(t,X ), meaning that the static
part Z < b(t,X ) has been eliminated.

The pressure convexity assumption ensures that ∂Z S ≤ 0, and hence that the
monotonicity ∂Z U > 0 is preserved. It also ensures the stability of the static layer in
the sense that the yield condition is satisfied without specifying what is the stress
in the static region. Without the convexity assumption, some material could start
flowing inside the static region, leading to unstable band shearing.

The boundary conditions (4) ν∂Z U(t,X , b(t,X )) = 0 expresses the continuity of
the shear stress accross the interface. It is an extra condition (with respect to a
problem with fixed boundary) that determines the evolution of the moving interface
b(t,X ).

The static equilibrium condition (5) expresses that the shear stress in the static
layer must be less than the yield stress for this layer to remain static. Without this
condition the whole layer would flow down. Mathematically it is like an entropy
condition that selects the physical solution.

The pressure has two nonhydrostatic contributions. The first is linear in h − Z , it is
only due to the slope of the free surface ∂X h. The second is more involved, it is
nonlinear in terms of the gradient of U, proportional to ∂X U/∂Z U. This one
induces a pressure feedback effect to the velocity that depends on the
inhomogeneities in the downslope direction X .
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Particular solutions to the model

Fully static solutions U ≡ 0, b = h, ∂th = 0 are characterized by the static
equilibrium condition (5). This condition says that the slope of the free surface is at
most µs , the friction must be higher than the effect of gravity through the slope.

Some steady flows with static/flowing transition exist if ν = 0 :

b(X)

h(X)

interface
flowing

static

topography

U(X,Z)

Z

X

The free surface and interface have slope equal to µs , so that gravity exactly balances
internal friction. The shape of the profile is arbitrary.
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Differential equation on the interface position

In the case without viscosity ν = 0, the interface position b(t,X ) satisfies

∂tb(t,X ) =
S(t,X , b(t,X ))

∂Z U(t,X , b(t,X ))
, if ∂Z U(t,X , b(t,X )) 6= 0.

It we take into account only the hydrostatic pressure in the value of S and neglect
∂X h, we recover the BCRE equation.

Our profile of U is arbitrary however, and ∂Z U is evaluated at Z = b(t,X ).

If ∂Z U(t,X , b(t,X )) = 0 this differential equation is no longer valid, indeed one
has also S(t,X , b(t,X )) = 0, hence 0/0 above.

If ν > 0 the differential equation becomes

∂tb = ν

„
∂Z S − ν∂3

ZZZ U

S

«
Z=b

, if S(t,X , b(t,X )) 6= 0.

There is a third-order derivative, while the parabolic equation on U is only
second-order. This makes the problem quite difficult to stabilize numerically.

The new model Static/flowing interface in granular flows 16



Comparison of the model with 2D simulations

. 2D simulations of the viscoplastic model are performed in Martin, Ionescu, Mangeney,
Bouchut, Farin (2016).

. They show that the analytic expansion of our model with the correction in ∂X U/∂Z U
is a better approximation to the 2D computed pressure than the hydrostatic one.
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4. Simplified model
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A simplified problem

We consider that X is fixed, leading to the problem of finding U(t,Z) defined for
b(t) < Z < h and b(t), 0 < b(t) < h (h given) such that

∂tU + S − ∂Z (ν∂Z U) = 0 for b(t) < Z < h,

where S(t,Z) is a given source satisfying ∂Z S ≤ 0, with boundary conditions

U = 0 at Z = b(t),
ν∂Z U = 0 at Z = b(t),
ν∂Z U = 0 at Z = h,

and the static equlilibrium condition

S(t, b(t)) ≥ 0.

. One can prove that if ν > 0, the static equlilibrium condition is automatically satisfied.

. The feedback process and the X dependency is hidden in the assumed knowledge of
the source S(t,Z).
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Numerical method for the simplified problem

A simple numerical method for the simplified model is as follows (Lusso, Bouchut, Ern,
Mangeney, 2016).

. We solve the problem over [0, h] with the boundary condition at Z = h (∂Z U = 0)
and an additional condition at Z = 0 (U = 0) by

U
n+1/2
j − Un

j

∆tn
+ S(tn,Zj)− ν

Un
j+1 + Un

j−1 − 2Un
j

∆Z 2
= 0,

(under the CFL condition 2ν∆tn ≤ ∆Z 2).
. We then simply cut the negative values

Un+1
j = max(U

n+1/2
j , 0).

. The interface position bn is then recovered as

bn = (kn − 1)∆Z , kn = min
n

j ∈ {1, . . . , nZ} such that Un
j ≥ C0∆Z 2

o
,

where C0 is an appropriate constant of the order of S/ν.

It means that U merely vanishes for Z < bn, and U > 0 for Z > bn.
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Sketch of the dynamic behaviour

Numerical experiments show the following dynamic behaviour when taking S constant,
S = g cos θ(µs − | tan θ|) (hydrostatic pressure).

. The static/flowing interface position b(t) first decreases as a consequence of viscosity
until a time tc, and attains a minimal value bmin (starting phase with erosion).

. Then b(t) increases as a consequence of friction, and (if h is sufficiently large) reaches
an asymptotic regime with upward velocity ḃ∞ (stopping phase with deposition), before
fully stopping at attaining h.

tstar

bstar

phase2

b

t

b0

h

phase1

Fig.: Evolution of the thickness of the static/flowing interface as a function of time.
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Numerical results : interface position b(t)
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Fig.: Static/flowing interface position b as a function of time t for different slope angles using
an initially linear velocity profile with shear 70s−1, and viscosity ν = 5 · 10−5m2s−1,
µs = tan(26o), h = 2cm, b0 = 5mm.
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Numerical results : velocity profile U(t, Z )
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Fig.: Velocity profile U(Z) at different times, with an initially linear velocity profile with shear
70s−1, for a viscosity ν = 5 · 10−5m2s−1 and slope angle θ = 24o , µs = tan(26o), h = 2cm,
b0 = 5mm.
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Comparison with experiments : interface position b(t)
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Fig.: Static/flowing interface position b as a function of time t with linear initial velocity profile
with shear 70s−1 and slope angle θ = 22o , µs = tan(26o), h = 2cm, b0 = 5mm, for respectively
experimental measurements from Farin, Mangeney, Roche 2014, our model without viscosity,
with constant viscosity ν = 5 · 10−5m2s−1, or variable viscosity associated with the µ(I ) law.
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Comparison with experiments : velocity profile U(t, Z )
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Fig.: Velocity profiles U(Z) at time t = 0.5s with linear initial velocity profile with shear 70s−1

and slope angle θ = 22o , µs = tan(26o), h = 2cm, b0 = 5mm, for respectively experimental
measurements from Farin, Mangeney, Roche 2014, our model without viscosity, with constant
viscosity ν = 5 · 10−5m2s−1, or variable viscosity associated with the µ(I ) law.
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5. Dynamics with Z -dependent source term
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Dynamics with Z -dependent source term

. The previous study was with S constant (independent of Z), i.e. we consider only the
hydrostatic part of the pressure.
. In the case with Z -dependent source term S(t,Z), one would like to know what is the
influence of this dependency on the evolution of U(t,Z).
. Recall that in the coupled problem, S is

S = g(sin θ + ∂X (h cos θ))− ∂Z (µsp),

with

p = g

„
cos θ + sin θ∂X h − 2| sin θ| ∂X U

|∂Z U|

«
×(h − Z).

thus

∂Z S = −µs∂
2
ZZ p = 2µsg | sin θ|∂2

ZZ

„
∂X U

|∂Z U| (h − Z)

«
relates mainly to the downslope space inhomogeneities.
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Dynamics with Z -dependent source term

With a Z -dependent source S(t,Z) and assuming no viscosity ν = 0, one can build the
solution U(t,Z) explicitly.

. It has to solve
∂tU + S = 0 for Z > b(t) with ∂Z U > 0,

. with boundary condition
U = 0 at Z = b(t),

. and static equlilibrium condition

S(t, b(t)) ≥ 0.

It looks like an ODE in time, but it is slightly more complicate than that. We assume
that

. ∂Z S ≤ 0, and S has a unique zero b∗(t) satisfying S(t, b∗(t)) = 0. Then

S(t,Z) > 0 for all Z < b∗(t),
S(t,Z) < 0 for all Z > b∗(t).

. The static equilibrium condition then says that b(t) ≤ b∗(t).
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Dynamics with Z -dependent source term

Proposition [Lusso, Bouchut, Ern, Mangeney, 2016]
With the previous assumptions, assume that

b∗(t) is nondecreasing, b0 < b∗(0).

Then there is a unique solution with initial data u0 (that has an interface at b0)
such that b(t) is nondecreasing, continuous and b(0) = b0. Moreover it satisfies

b(t) < b∗(t) for all t ∈ [0,T ].
There is a progressive stopping.
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T
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Static-flowing interface position

b
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Fig.: Illustration of the behaviour of the position b(t) of the static/flowing interface The source
and initial velocity are linear, with h = 6, b0 = 3.5, b∗ = 5.
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Dynamics with Z -dependent source term

Proposition [Lusso, Bouchut, Ern, Mangeney, 2016]
With the previous assumptions, assume that

b∗(t) is decreasing, b0 < b∗(0).
Then there is a unique solution with initial data u0 (that has an interface at b0)
such that b(t) is continuous in [0,T ], piecewise C 1 and b(0) = b0.

Moreover b(t) is increasing in [0, t∗], and one of the two following cases occurs
(i) b(t) < b∗(t) for all t ∈ [0,T ] and t∗ = T .

(ii) b(t) reaches b∗(t) at the time t∗, ḃ(t∗ − 0) = 0,
and for all t ∈ [t∗,T ] one has b(t) = b∗(t) (thus b is decreasing in [t∗,T ]).
There is a progressive stopping, then a progressive starting.
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Fig.: Illustration of the behaviour of the position b(t) of the static/flowing interface The source
and initial velocity are linear.
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Dynamics with Z -dependent source term

The proof relies on integrating the differential equation ∂tU = −S until reaching a
boundary of the domain Z > b(t).

C

B
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b∗(0)b0 b(t?) = b∗(t?)
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•
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t
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*
*
*
*
*
*
*

•*
*
*
*
*
*
*
•

Fig.: Integration of the ordinary differential equation along vertical lines
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Dynamics with Z -dependent source term

Proposition [Lusso, Bouchut, Ern, Mangeney, 2016]
With the previous assumptions, assume that

b∗(t) is increasing, b0 > b∗(0).

Then there is a unique solution with initial data u0 (that has an interface at b0)
such that b(t) is nondecreasing, continuous and b(0+) = b∗(0) < b0. Moreover

b(t) < b∗(t) for all t ∈ (0,T ].
There is an instantaneous starting of a part of the mass, then a progressive stopping.
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Fig.: Illustration of the behaviour of the position b(t) of the static/flowing interface The source
and initial velocity are linear, with h = 6, b0 = 3.5.
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6. Conclusion
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Conclusion

We have established reduced equations for the evolution of the static/flowing
interface from 2D viscoplastic models.

Thin layer and several assumptions are necessary, but the normal variable Z
remains, it is not a depth-averaged model.

The model describes several physically relevant solutions (fully static
configurations, steady flow with static/flowing transitions, both characterized by a
condition on the slope of the free surface)

The model generalizes the BCRE model without viscosity. With viscosity it is more
complicate and involves a third-order derivative of the velocity.

A simple numerical method is possible when the X dependency is removed.

The viscosity enables to describe an initial erosion of the bed that is observed in
experiments with initially static bed of the same material.

The effect of the source term (that represents the feedback via the nonhydrostatic
pressure) is to initiate starting or stopping of the mass.

Open issues :
. Simulate the coupled problem with X (and Z) dependency, and understand the effect
of X inhomogeneities.
. Establish a ”depth-averaged model” that eliminates the variable Z but retains only
the leading effects (evolution of the interface and the slope for example).
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