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Introduction
The objective of these lectures is to discuss dynamical
coarse-graining techniques for stochastic dynamics. PDE tools are
useful to derive an effective dynamics, and analyze the error. We
will use the fact that the original dynamics are metastable.

In the context of geophysical flows, metastable stochastic processes
are used to model bifurcations in the flow topology. [Bouchet, Simonnet]

Example: 2d periodic stochastic Navier-Stokes equations.
{

∂tω + v · ∇ω = −αω + ν∆ω +
√
ση

v = ez ×∇ψ, ∆ψ = ω
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Introduction

Starting from a dynamics in high dimension ((Xt)t≥0 with values in
R
d), and a coarse-graining map (C : Rd → R or C : Rd → N), we

would like to derive an effective Markov dynamics close to
(C(Xt))t≥0.

• Theoretically: this yields simpler and hopefully insightful
models.

• Numerically: use these coarse-grained dynamics as predictors
in predictor-corrector schemes.
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Molecular dynamics

The motivation for these works is molecular dynamics
computations.

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

The basic ingredient: a potential V which associates to a
configuration (x1, ..., xNatom

) = x ∈ R
3Natom an energy

V (x1, ..., xNatom
) ∈ R. The dimension d = 3Natom is large (a few

hundred thousand to millions).
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Molecular dynamics

Newton equations of motion:

{

dX t = M−1Pt dt,
dPt = −∇V (X t) dt,
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Molecular dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Molecular dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the over-damped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Molecular dynamics

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamics quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulty: In practice, X t is a metastable process.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15 s

Dissociation time = 0.5 s

Challenge: bridge the gap between timescales
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Introduction

For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

The aim of this talk is to discuss coarse-graining techniques to
efficiently generate dynamical quantities.

• First, for a coarse-graining map with continuous values
(justification of Mori-Zwanzig approaches). Mathematical

tool: entropy techniques and logarithmic Sobolev inequalities.

• Second, for a coarse-graining map with discrete values
(justification of Markov state models). Mathematical tool:

quasi-stationary distribution.
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The continuous coarse-graining map

Recall the original dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t .

We are given a smooth one dimensional function ξ : Rd → R.

Problem: propose a Markovian dynamics (say on zt ∈ R) that
approximates the dynamics (ξ(X t))t≥0.

Two preliminary tools: entropy technique and free energy.



Introduction Continuous coarse-graining map Discrete coarse-graining map Conclusion

Longtime convergence and entropy (1)

Recall the original gradient dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t .

The associated Fokker-Planck equation writes:

∂tψ = div
(

∇Vψ + β−1∇ψ
)

.

where X t ∼ ψ(t, x) dx .

The metastable behaviour of X t is related to the multimodality of
µ, which can be quantified through the rate of convergence of ψ to
ψ∞ = Z−1 exp(−βV ).

A classical PDE approach: use entropy techniques.
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Longtime convergence and entropy (2)

Notice that the Fokker-Planck equation rewrites

∂tψ = β−1div

(

ψ∞∇
(

ψ

ψ∞

))

where ψ∞ = Z−1 exp(−βV ).
Let us introduce the entropy:

H(ψ(t, ·)|ψ∞) =

∫

ln

(

ψ

ψ∞

)

ψ.

We have (Csiszár-Kullback inequality):

‖ψ(t, ·)− ψ∞‖L1 ≤
√

2H(ψ(t, ·)|ψ∞).
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Longtime convergence and entropy (3)

dH(ψ(t, ·)|ψ∞)

dt
=

∫

ln

(

ψ

ψ∞

)

∂tψ

= β−1

∫

ln

(

ψ

ψ∞

)

div

(

ψ∞∇
(

ψ

ψ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

ψ =: −β−1I (ψ(t, ·)|ψ∞).

Definition: The meas ψ∞(x) dx satisfies a Logarithmic Sobolev
inequality (LSI(R)) iff: ∀φ pdf,

H(φ|ψ∞) ≤ 1

2R
I (φ|ψ∞)

Lemma: ψ∞ satisfies LSI(R) ⇐⇒ for all IC ψ(0, ·), for all t ≥ 0,
H(ψ(t, ·)|ψ∞) ≤ H(ψ(0, ·)|ψ∞) exp(−2β−1Rt).
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Free energy

The free energy A : R → R is defined by:

exp(−βA(z)) = Z−1

∫

{x , ξ(x)=z}
exp(−βV (x)) δξ(x)−z(dx).

By definition,

∫

ϕ ◦ ξdµ =

∫

ϕ(z) exp(−βA(z)) dz .

Question: What is the dynamical content of the free energy A ? Is
the effective dynamics

dzt = −A′(zt) dt +
√

2β−1dBt

close to (ξ(X t))t≥0 ? It is thermodynamically consistent
(ξ ∗ µ = exp(−βA(z)) dz) but is it dynamically consistent ?



Introduction Continuous coarse-graining map Discrete coarse-graining map Conclusion

Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

First attempt:

dz̃t = b̃(t, z̃t) dt +
√

2β−1σ̃(t, z̃t) dBt

with

b̃(t, z̃) = E

(

(−∇V · ∇ξ + β−1∆ξ)(X t)
∣

∣

∣
ξ(X t) = z̃

)

σ̃2(t, z̃) = E

(

|∇ξ|2(X t)
∣

∣

∣
ξ(X t) = z̃

)

.

Then, for all time t ≥ 0, L(ξ(X t)) = L(z̃t) ! But b̃ and σ̃ are
untractable numerically...
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Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

The effective dynamics:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with

b(z) = Eµ

(

(−∇V · ∇ξ + β−1∆ξ)(X )
∣

∣

∣
ξ(X ) = z

)

σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

.

Related approaches: Mori-Zwanzig and projection operator
formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin,

Pavliotis/Stuart, ...].
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Link with the free energy
• The effective dynamics is:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

and

b = −σ2A′ + β−1∂z(σ
2).

In particular (i) the effective dynamics is reversible wrt ξ ∗ µ
and (ii) if |∇ξ(x)| = 1, then σ(z) = 1, and b(z) = −A′(z).

• It is possible to reparameterize the foliation of the
configurational space and work with

ζ(x) = h(ξ(x)),

where h′(z) = 1/σ(z). Then, the effective dynamics
associated to ζ(x) is

dzt = −A′(zt) dt +
√

2β−1 dBt

where A is the free energy associated to ζ.
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Error analysis: time marginals

The effective dynamics is reversible wrt ξ ∗ µ.
Moreover, under the assumptions (ξ(x1, . . . , xn) = x1 for
simplicity):

(H1) The conditional probability measures µ(·|ξ(x) = z) satisfy a
Logarithmic Sobolev Inequality with constant ρ,

(H2) Bounded coupling assumption: ‖∂1∂2,...,nV ‖L∞ ≤ κ.

Then, ∃C > 0, ∀t ≥ 0,

H(L(ξ(X t)),L(zt)) ≤ C
κ

ρ

(

H(L(X 0)|µ)− H(L(X t)|µ)
)

.

If ρ is large (timescale decoupling assumption), the error is small.
The proof [Legoll, TL] is inspired by a decomposition of the entropy
proposed in [Grunewald/Otto/Villani/Westdickenberg], and entropy estimates.
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Proof (1/5)

For simplicity: 2d case and ξ(x , y) = x .

Since σ = 1, the effective dynamics is

dzt = −A′(zt) dt +
√

2/β dBt

where the free energy A is defined by

exp(−βA(x)) =
∫

R

ψ∞(x , y) dy = Z−1

∫

R

exp(−βV (x , y)) dy

so that

A′(x) =

∫

R
∂xV (x , y) exp(−βV (x , y)) dy
∫

R
exp(−βV (x , y)) dy

=

∫

R
∂xV (x , y)ψ∞(x , y) dy
∫

R
ψ∞(x , y) dy

= Eµ [∂xV (X ) | ξ(X ) = x ]
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Proof (2/5)
The FP equation associated with the gradient dynamics
dXt = −∇V (Xt) dt +

√

2β−1dWt writes

∂tψ = div (∇Vψ) + β−1∆ψ

Let ψ(t, x) =
∫

R
ψ(t, x , y) dy be the law of ξ(Xt). We have

∂tψ = ∂x

(

b̃(t, x)ψ
)

+ β−1∂x ,xψ

where

b̃(t, x) =

∫

R
∂xV (x , y)ψ(t, x , y) dy
∫

R
ψ(t, x , y) dy

=

∫

R
∂xV (x , y)ψ(t, x , y) dy

ψ(t, x)
.

On the other hand, the density φ(t, x) of zt satisfies

∂tφ = ∂x
(

A′(x)φ
)

+ β−1∂x ,xφ.

Question: is φ close to ψ ?
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Proof (3/5)

Consider

E (t) = H(ψ|φ) =
∫

R

ln

(

ψ(t, x)

φ(t, x)

)

ψ(t, x) dx .

dE

dt
= −

∫

R

ψ

φ
∂tφ+

∫

R

ln

(

ψ

φ

)

∂tψ

= −β−1I (ψ|φ) +
∫

R

ψ ∂x

(

ln
ψ

φ

)

(

A′ − b̃
)

≤ −β−1I (ψ|φ) + 1

2α

∫

R

ψ

(

∂x

(

ln
ψ

φ

))2

+
α

2

∫

R

ψ
(

A′ − b̃
)2

=

(

1

2α
− β−1

)

I (ψ|φ) + α

2

∫

R

ψ
(

A′ − b̃
)2

=
β

4

∫

R

ψ
(

A′ − b̃
)2

,

by choosing α = β/2.
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Proof (4/5)
Let πx(dy1, dy2) be a coupling measure with marginals

νxt = ψ(t,x ,y)

ψ(t,x)
and νx∞ = ψ∞(x ,y)

ψ∞(x)
. We have, using (H2),

∣

∣

∣
A′(x)− b̃(t, x)

∣

∣

∣
=

∣

∣

∣

∣

∫

R2

(∂xV (x , y1)− ∂xV (x , y2))π
x(dy1, dy2)

∣

∣

∣

∣

≤ ‖∂xyV ‖L∞
∫

R2

|y1 − y2|πx(dy1, dy2).

Taking the infimum on πx ∈ Π (νxt , ν
x
∞),

∣

∣

∣
A′(x)− b̃(t, x)

∣

∣

∣
≤ ‖∂xyV ‖L∞ W1(ν

x
t , ν

x
∞).

We now use the LSI on νx∞ (H1) and Talagrand inequality to get

∣

∣

∣
A′(x)− b̃(t, x)

∣

∣

∣
≤ ‖∂xyV ‖L∞

ρ

√

I (νxt |νx∞)
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Proof (5/5)
We thus have
∫

R

ψ(t, x)
(

A′(x)− b̃(t, x)
)2

dx ≤ ‖∂xyV ‖2
L∞

ρ2

∫

R

ψI (νxt |νx∞)

≤ ‖∂xyV ‖2
L∞

ρ2
I (ψ|ψ∞).

Plugging this in the entropy estimate, we get

dE

dt
≤ β

4

‖∂xyV ‖2
L∞

ρ2
I (ψ|ψ∞)

= −β
2‖∂xyV ‖2

L∞

4ρ2

dH(ψ|ψ∞)

dt
.

Integrating in time (since E (0) = 0):

∀t ≥ 0, E (t) ≤ β2‖∂xyV ‖2
L∞

4ρ2
(H(ψ(0)|ψ∞)− H(ψ(t)|ψ∞)) .
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Entropy techniques

Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ ∗ µ(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for µ.

• [TL, Rousset, Stoltz Nonlinearity, 2008] Analysis of the adaptive biasing
force method (ξ(x1, . . . , xn) = x1):

{

dXt = −∇(V − At ◦ ξ)(Xt) dt +
√

2β−1dWt ,

A′
t(z) = E(∂1V (Xt)|ξ(Xt) = z).
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Error analysis: trajectories

Under the assumptions (ξ(x1, . . . , xn) = x1 for simplicity):

(H1’) The conditional probability measures µ(·|ξ(x) = z) satisfy a
Poincaré inequality with constant ρ,

(H2’) Bounded coupling assumption: ‖∂1∂2,...,nV ‖L2(µ) ≤ κ,

(H3) b is one-sided Lipschitz (−b′ ≤ Lb) and such that
∫

Rd

(

sup
y∈[−|x |,|x |]

|b′(y)|
)2

µ(dx) <∞.

Then, if z0 = ξ(X 0) is distributed according to a measure µ0 such
that dµ0

dµ ∈ L∞,

E

(

sup
t∈[0,T ]

|ξ(Xt)− zt |
)

≤ C
κ

ρ

The proof [Legoll, TL, Olla] uses a probabilistic arguments (Poisson
equations, and Doob’s martingale inequality).
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Remark: Application to averaging principle

These techiques can be used to obtain quantitative results for
averaging principles. Let us consider











dX
1,ε
t = −∂1V (X ε

t ) dt +
√

2β−1dW 1
t

dX
i ,ε
t = −∂iV (X ε

t )

ε
dt +

√

2β−1

ε
dW i

t for i = 2, . . . , n

Then, under the assumptions of the former result:

E

(

sup
0≤t≤T

∣

∣

∣
X
ε,1
t − ξt

∣

∣

∣

)

≤ C
√

βε
κ

ρ
.

Notice that we do not assume b globally Lipschitz.
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Numerical illustration: dimer in a solvant
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• Solvent-solvent, solvent-monomer: truncated LJ for ‖xi − xj‖,
• Monomer-monomer: double well potential for ‖x1 − x2‖.

ξ is the distance between the two monomers: ξ(x) = ‖x1 − x2‖.
Transition times from the compact to the stretched state:

β Reference Eff. dyn. Dyn. based on A

0.5 262 ± 6 245 ± 5 504 ± 11

0.25 1.81 ± 0.04 1.68 ± 0.04 3.47 ± 0.08
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A multiscale parareal algorithm: the main idea

How to use the effective dynamics ?

One idea: an algorithm which consists in coupling a macroscopic
model with a microscopic model in order to efficiently generate the
microscopic dynamics. The macroscopic model is the predictor, and
the microscopic model is the corrector.
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A multiscale parareal algorithm

The basic algorithm is very much inspired by the parareal algorithm
[Lions, Maday Turinici].
Let us present it in a very simple setting: Consider the fine
dynamics:







ẋ = αx + pT y ,

ẏ =
1

ǫ
(qx − Ay) .

The variable u = (x , y) contains a slow variable x ∈ R and a fast
variable y ∈ R

d−1. Associated to that dynamics, we have an
expensive fine propagator F∆t over the time range ∆t.
Under appropriate assumption, a natural coarse dynamics (ǫ→ 0)
on x is:

Ẋ = (α+ pTA−1q)X .

Associated to that dynamics, we have a cheap coarse propagator
G∆t over the time range ∆t.
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The algorithm

Let us now present the algorithm

Let u(0) = u0 be the initial condition.

1. Initialization:

a) Compute {X n
0
}
0≤n≤N sequentially by using the coarse

propagator:

X 0

0
= R(u0), X n+1

0
= G∆t(X

n
0
).

b) Lift the macroscopic approximation to the microscopic level:

u0

0
= u0 and, for all 1 ≤ n ≤ N, un

0
= L(X n

0
).
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2. Assume that, for some k ≥ 0, the sequences {unk}0≤n≤N
and

{X n
k }0≤n≤N

are known. Then, at the iteration k + 1:

a) For all 0 ≤ n ≤ N − 1, compute (in parallel) using the coarse
and the fine-scale propagators

X
n+1

k = G∆t(X
n
k ), un+1

k = F∆t(u
n
k ).

b) For all 0 ≤ n ≤ N − 1, evaluate the jumps (the difference
between the two propagated values) at the macroscopic level:

Jn+1

k = R(un+1

k )− X
n+1

k .

c) Compute
{

X n
k+1

}

0≤n≤N
sequentially by

X 0

k+1
= R(u0), X n+1

k+1
= G∆t(X

n
k+1

) + Jn+1

k .

d) Compute
{

un+1

k+1

}

0≤n≤N−1
by matching the result of the local

microscopic computation, un+1

k , on the corrected macroscopic
state X n+1

k+1
:

u0

k+1
= u0 and, for all 0 ≤ n ≤ N − 1, un+1

k+1
= P(X n+1

k+1
, un+1

k ).
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Error analysis

In the simple setting above, the restriction, lifting and matching
operators we use are: R(x , y) = x , L(X ) = (X , (A−1q)X ) and
P(X , (x , y)) = (X , y).

One can prove the following [Legoll, TL, Samaey]: Let us assume that F∆t

and G∆t are exact (no time-discretization error). The errors on the
macroscopic variable and the microscopic variable are:

for all k ≥ 0, sup
0≤n≤N

|X n
k −Ru(tn)| ≤ Cǫ1+⌈k/2⌉,

for all k ≥ 0, sup
0≤n≤N

‖unk − u(tn)‖ ≤ Cǫ1+⌊k/2⌋,
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Numerical results

10−16

10−12

10−8

10−4

100

∣ ∣

E
N k

∣ ∣

/
|x
(t

N
)|

10−5 10−4 10−3 10−2 10−1

ǫ

10−16

10−12

10−8

10−4

100

∥ ∥

eN k

∥ ∥

/
‖
u
(t

N
)‖

10−5 10−4 10−3 10−2 10−1

ǫ

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Similar results on non linear ODEs such as the Brusselator problem.

Work in progress: extensions to PDEs and stochastic problems.
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Accelerated dynamics

Let us consider the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

Objective: generate very efficiently a trajectory (St)t≥0 which has
(almost) the same law as (S(X t))t≥0.

This is the bottom line of the accelerated dynamics proposed by A.
Voter in the late 90’s is to get efficiently the state-to-state
dynamics. Three algorithms: Parallel replica, Hyperdynamics,
Temperature Accelerated Dynamics.
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The Quasi-Stationary Distribution

How to take advantage of metastability to build efficient sampling
techniques ?

Let us consider a metastable state W , and

TW = inf{t ≥ 0,X t 6∈ W }.

Lemma: Let X t start in the well W . Then there exists a probability
distribution ν with support W such that

lim
t→∞

L(X t |TW > t) = ν.

Remark: Quantitative definition of a metastable state:
exit time ≫ local equilibration time
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The Quasi-Stationary Distribution

Property 1: ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x
t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x
W ) ν(dx)

.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Property 2: Let L = −∇V · ∇+ β−1∆ be the infinitesimal
generator of (X t). Then the density u1 of ν (dν = u1(x)dx) is the
first eigenfunction of L∗ = div (∇V + β−1∇) with absorbing
boundary conditions:

{

L∗u1 = −λ1u1 on W ,

u1 = 0 on ∂W .
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The Quasi-Stationary Distribution

Property 3: If X 0 ∼ ν then,

• the first exit time TW from W is exponentially distributed
with parameter λ1 ;

• TW is independent of the first hitting point XTW
on ∂W ;

• the exit point distribution is proportional to −∂nu1: for all
smooth test functions ϕ : ∂W → R,

E
ν(ϕ(XTW

)) = −

∫

∂W
ϕ∂nu1 dσ

βλ1

∫

W

u1(x) dx

.
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Link with kinetic Monte Carlo models (1/2)
Starting from the QSD in W , the exit event from W is Markovian:
it can be rewritten as one step of a Markov jump process (kinetic
Monte Carlo or Markov state model):

∂W1

∂W2

∂W3

∂W4
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Link with kinetic Monte Carlo models (2/2)

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

.

To each possible exit region ∂Wi is associated a rate k(i) = λ1p(i).
If τi ∼ E(k(i)) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).
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Escaping from a metastable state

How to use these properties to design efficient algorithms ?

Assume that the stochastic process remained trapped for a very
long time in a metastable state W . How to accelerate the escape
event from W , in a statistically consistent way ?

Remark: In practice, one needs to:

• Choose the partition of the domain into (metastable) states;

• Associate to each state an equilibration time (a.k.a.
decorrelation time).

These are not easy tasks... we will come back to that.

Remark: All the algorithms below equally apply to the Langevin
dynamics but the extensions of the mathematical results to the
Langevin dynamics are not straightforward...
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The Parallel Replica Algorithm
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The Parallel Replica Algorithm
Idea: perform many independent exit events in parallel.

Two steps:
• Distribute N independent initial conditions in W according to

the QSD ν ;
• Consider the first exit event, and multiply it by the number of

replicas.
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The Parallel Replica Algorithm
Why is it consistent ?

• Exit time is independent of exit point so that

X
I0

T
I0
W

L
= X 1

T 1
W
,

where I0 = arg mini (T
i
W );

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(T 1
W , . . . ,T

N
W )

L
= T 1

W .

Remark: In practice, discrete time processes are used. Exponential
laws become geometric, and one can adapt the algorithm by using
the identity [Aristoff, TL, Simpson, 2014]: if τi i.i.d. with geometric law,

N[min(τ1, . . . , τN)− 1] + min[i ∈ {1, . . . ,N}, τi = min(τ1, . . . , τN)]
L
= τ1.
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The Parallel Replica Algorithm

The full algorithm is in three steps:

• Decorrelation step

• Dephasing step

• Parallel step
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The Parallel Replica Algorithm

Decorrelation step: run the dynamics on a reference walker...
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The Parallel Replica Algorithm

Decorrelation step: ... until it remains trapped for a time τcorr .
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

The three steps of ParRep:

• Decorrelation step: does the reference walker remain trapped
in a set ?

• Dephasing step: prepare many initial conditions in this
trapping set.

• Parallel step: detect the first escaping event.
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The decorrelation step

How to quantify the error introduced by the dephasing and parallel
steps, when the decorrelation step is successful ?

When the decorrelation step is successful, it is assumed that the
reference walker is distributed according to the QSD : if it was
indeed the case, the algorithm would be exact. The decorrelation
step can be seen as a way to probe this assumption. What is the
error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1

.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1

≤ 1

λ1

.
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The Parallel Replica Algorithm

This algorithm is very versatile: it works for entropic barriers, and
for any partition of the state space into states. But it requires some
a priori knowledge on the system: the equilibration time τcorr
attached to each state S .

Two questions: How to choose τcorr ? How to sample the QSD ?

We recently proposed a generalized Parallel Replica algorithm [Binder,

TL, Simpson, 2014] to solve these issues. It is based on two ingredients:

• the Fleming-Viot particle process

• the Gelman-Rubin statistical test
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX k
t = −∇V (X k

t ) dt +
√

2β−1dW k
t

until one of them, say X 1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X 2

t , . . . ,X
N
t , say X 2

t ;

4. Branch X 2
t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t .

It is known that the empirical distribution

µt,N ≡ 1

N

N
∑

k=1

δX k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < TW ).
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The generalized Parallel Replica algorithm

The generalized Parallel Replica algorithm consists in using a
Fleming-Viot particle process for the dephasing step and running in
parallel the decorrelation and the dephasing steps.

If the Fleming Viot particle process reaches stationarity before the
reference walker, go to the parallel step. Otherwise, restart a new
decorrelation / dephasing step.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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Numerical test case: the 7 atoms LJ cluster

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

We study the escape from the configuration C0 using overdamped
Langevin dynamics with β = 6. The next visited states are C1

or C2.
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Numerical test case: the 7 atoms LJ cluster

Method TOL 〈T 〉 P[C1] P[C2]

Serial – 17.0 (0.502, 0.508) (0.491, 0.498)
ParRep 0.2 19.1 (0.508, 0.514) (0.485, 0.492)
ParRep 0.1 18.0 (0.506, 0.512) (0.488, 0.494)
ParRep 0.05 17.6 (0.505, 0.512) (0.488, 0.495)
ParRep 0 .01 17.0 (0.504, 0.510) (0.490, 0.496)

Method TOL 〈tcorr〉 〈Speedup〉 % Dephased

Serial – – – –
ParRep 0.2 0.41 29.3 98.5%
ParRep 0.1 .98 14.9 95.3%
ParRep 0.05 2.1 7.83 90.0%
ParRep 0 .01 11 1.82 52.1%
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Numerical test case: the 7 atoms LJ cluster

Figure: LJ
2D

7
: Cumulative distribution function of the escape time

from C0.
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kinetic Monte Carlo and Harmonic Transition State Theory

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4
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kMC models
Let us go back to the kinetic Monte Carlo model.

∂W1

∂W2

∂W3

∂W4

To each exit region ∂Wi is associated a rate k(i). Let τi ∼ E(k(i))
be independent exponential random variables. And then,

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).

Thus, (i) exit time and exit region are independent r.v. ; (ii) exit
time is E(k(1) + . . .+ k(I )); (iii) exit region is i with prob.

k(i)
k(1)+...+k(I ) .
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The Eyring Kramers law and HTST
In practice, kMC models are parameterized using HTST.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4

We assume in the following V (z1) < V (z2) < . . . < V (zI ).

Eyring Kramers law (HTST): k(i) = Ai exp (−β(V (zi )− V (x1)))
where Ai is a prefactor depending on V at zi and x1.
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kMC and HTST

Thus, one obtains the following law for the exit event:

• exit time and exit region are independent r.v.

• exit time is E(k(1) + . . .+ k(I )) and, when β is large

k(1) + . . .+ k(I ) ≃ k(1) = A1 exp (−β(V (z1)− V (x1)))

• exit region is i with probability k(i)
k(1)+...+k(I ) and, when β is

large,

k(i)

k(1) + . . .+ k(I )
≃ k(i)

k(1)
=

Ai

A1

exp (−β(V (zi )− V (z1)))

Our aim: justify and analyze this method.
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Back to overdamped Langevin and the QSD
Starting from the QSD dν = u1(x)dx , we already know that

• the exit time TW and the exit point XTW
are independent r.v.

• the exit time is exponentially distributed with parameter λ1

• the exit region is ∂Wi with probability

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

We thus need to prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi )− V (z1))).



Introduction Continuous coarse-graining map Discrete coarse-graining map Conclusion

Small temperature regime
The question is thus: consider (λ1, u1) such that (first eigenvalue

eigenfunction pair)

{

div (∇Vu1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

We assume wlg u1 > 0 and
∫

u2

1
eβV = 1.

In the small temperature regime (β → ∞), prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi )− V (z1))).
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Assumptions
• W is an open bounded smooth domain in R

d .
• V : W → R is a Morse function with a single critical point x1.

Moreover, x1 ∈ W and V (x1) = minW V .
• ∂nV > 0 on ∂W and V |∂W is a Morse function with local

minima reached at z1, . . . , zI with V (z1) < . . . < V (zI ).
• V (z1)− V (x1) > V (zI )− V (z1)
• ∀i ∈ {1, . . . I}, consider Bzi the basin of attraction for the

dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

x1

z1

z2

z3

z4
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Agmon distance

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫ 1

0

g(γ(t))|γ′(t)| dt

where g =

{

|∇V | in W

|∇TV | in ∂W
, and the infimum is over all Lipschitz

paths γ : [0, 1] → W such that γ(0) = x and γ(1) = y . A few

properties:

• One has ∀x , y ∈ W , |V (x)− V (y)| ≤ da(x , y) ≤ C |x − y |
• On a neighborhood V of a local minima zi , the function
x 7→ da(x , zi ) satisfies the eikonal equation: |∇Φ|2 = |∇V |2
on V with boundary conditions Φ = V on V ∩ ∂W , and
Φ ≥ V (zi ).
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Results
[In preparation with G. Di Gesu, D. Le Peutrec and B. Nectoux] In the limit β → ∞, the
exit rate is

λ1 =

√

β

2π
∂nV (z1)

√

det(HessV )(x1)
√

det(HessV|∂W )(z1)
e−β(V (z1)−V (x1))(1+O(β−1)).

Moreover, for all open set Σi containing zi such that Σi ⊂ Bzi ,

∫

Σi
∂nu1 dσ
∫

W
u1

= −Ci (β)e
−β(V (zi )−V (x1))(1 + O(β−1)),

where Ci (β) =
β3/2
√

2π
∂nV (zi )

√

det(HessV )(x1)
√

det(HessV |∂W )(zi )
. Therefore,

P
ν(XTW

∈ Σi ) =
∂nV (zi )

√

det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(zi )
e−β(V (zi )−V (z1))(1+O(β−1)).
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Related results in the literature (1/3)

The result on λ1 is well known and actually holds under weaker
assumptions. See for example [Helffer Nier] [Le Peutrec].

Similar formulas are obtained concerning the problem on the whole
domain to compute the cascade of timescales down to the global
minimum.

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Schuette, Helffer, Nier, Pavliotis]

Warning: The exit rate is (1/2) times the transition rate !
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Related results in the literature (2/3)

Another approach to study the exit problem from a domain: Large
deviation techniques [Freidlin, Wentzell, Day, Vanden Eijnden, Weare, Touchette,...].

Compared to our approach, the assumptions in LD are much less
stringent but LD only provides the exponential rates (not the
prefactors) and LD does not provide error bounds. (Moreover the

fact that the exit time is exponentially distributed and the independance

property between exit time and exit point are only obtained when

β = ∞.)

Typical result [Freidlin, Wentzell, Theorem 5.1]: for all W ′ ⊂⊂ W , for any
γ > 0, for any δ > 0, there exists δ0 ∈ (0, δ] and β0 > 0 such that
for all β ≥ β0, for all x ∈ W ′ and for all y ∈ ∂W ,

exp(−β(V (y)− V (z1) + γ)) ≤ P
x(XTW

∈ Vδ0(y))
≤ exp(−β(V (y)− V (z1)− γ))
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Related results in the literature (3/3)

Why do we care about prefactors ?

Consider a situation with two local minima on the boundary
(V (z1) < V (z2)). Compare

• the probability to leave through Σ2 such that z2 ∈ Σ2,
Σ2 ⊂ Bz2 and

• the probability to leave through Σ such that Σ ⊂ Bz1 and
infΣ V = V (z2).

Then, in the limit β → ∞,

P
ν(XTW

∈ Σ)

Pν(XTW
∈ Σ2)

= O(β−1/2).
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Discussion on the assumptions (1/5)

The assumption V (z1)− V (x1) > V (zI )− V (z1) is probably not
needed. It is required by our technique of proof.

The assumption

∀i ∈ {1, . . . I}, inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

seems indeed important to get the expected results.
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Discussion on the assumptions (2/5)
Let us consider the potential function V (x , y) = x2 + y2 − ax with
a ∈ (0, 1/9) on the domain W . Two saddle points: z1 = (1, 0) and
z2 = (−1, 0) (and V (z2)− V (z1) = 2a). One can check that the
above assumptions are satisfied.

Σ2

z2 z1

The domain W

x1
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Discussion on the assumptions (3/5)
With a = 1/10, let us plot

• the numerical results f : β 7→ ln P
ν(XTW

∈ Σ2)

• the theoretical result g : β 7→ lnB2 − β(V (z2)−V (z1)), where

B2 =
∂nV (z2)

√
det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(z2)
is the expected prefactor.
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Discussion on the assumptions (4/5)
Same result with a = 1/20.
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Discussion on the assumptions (5/5)
We now modify the potential such that the assumption on the
Agmon distance is not satisfied anymore.
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Sketch of the proof (1/4)
Let us consider v1 = u1 exp(βV ), so that

{

L(0)v1 = −λ1v1 on W ,

v1 = 0 on ∂W ,

where L(0) = β−1∆−∇V · ∇ is a self adjoint operator on
L2(exp(−βV )). We are interested in ∇v1 · n, and ∇v1 satisfies











L(1)∇v1 = −λ1∇v1 on W ,

∇T v1 = 0 on ∂W ,

(β−1div −∇V ·)∇v1 = 0 on ∂W ,

where
L(1) = β−1∆−∇V · ∇ − Hess(V ).

Therefore ∇v1 is an eigenvector (eigen-1-form) of −L(1) associated
with the small eigenvalue λ1.
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Sketch of the proof (2/4)
We build so-called quasi-modes which approximate the eigenvectors
of L(0) and L(1) associated with small eigenvalues in the regime
β → ∞:

• An approximation of v1 (notice that for β sufficiently large,
dim(Ran1[0,β−1/2](−L(0))) = 1):

ṽ ∝ 1W ′

where W ′ ⊂⊂ W .

• An approximation of Ran
[

1[0,β−1/2](−L(1))
]

:

Span(ψ̃1, . . . , ψ̃I ).

The functions ψ̃i are built using auxiliary simpler eigenvalue
problems and WKB approximations. The support of ψ̃i is
essentially in a neighborhood of zi . (Agmon estimates are used to

prove exponential decay away zi .)
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Sketch of the proof (3/4)
The last step consists in projecting the approximation of ∇v1 on

the approximation of Ran
[

1[0,β−1/2](−L(1))
]

.

One can check that if ṽ and (ψ̃i )i=1...I are such that

• [Normalization] ṽ ∈ H1
0 (e

−βV ) and ‖ṽ‖L2(e−βV ) = 1. ∀i ,
ψ̃i ∈ H1

T (e
−βV ) and ‖ψ̃i‖L2(e−βV ) = 1.

• [Good quasimodes]
• ∀δ > 0

‖∇ṽ‖2

L2(e−βV ) = O(e−β(V (z1)−V (x1)−δ)),

• ∃ε > 0, ∀i ,

‖1[β−1/2,∞)(−L(1))ψ̃i‖2

H1(e−βV ) = O(e−β(V (zI )−V (z1)+ε))

• [Orthonomality of quasimodes] ∃ε0 > 0, ∀i < j

〈ψ̃i , ψ̃j〉L2(e−βV ) = O( e−
β
2
(V (zj )−V (zi )+ε0) ).
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Sketch of the proof (4/4)

• [Decomposition of ∇ṽ ] ∃Ci , p, ∀i ,

〈∇ṽ , ψ̃i 〉L2(e−βV ) = Ci β
−pe−

β
2
(V (zi )−V (x1)) (1 + O(β−1) ).

• [Normal components of the quasimodes] ∃Bi ,m, ∀i , j
∫

Σi

ψ̃j ·n e−βV dσ =

{

Bi β
−m e−

β
2
V (zi ) ( 1 + O(β−1) ) if i = j

0 if i 6= j

Then for i = 1, ..., n, when β → ∞
∫

Σi

∂nv1 e−βV dσ = CiBi β
−(p+m) e−

β
2
(2V (zi )−V (x1)) (1+O(β−1))

The proof is based on a Gram-Schmidt procedure.
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Conclusions

• There are two other accelerated dynamics methods:
Hyperdynamics and Temperature Accelerated Dynamics. From
ParRep to Hyper to TAD, the underlying assumptions for the
algorithms to be correct are more and more stringent.

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations (Markov state models).
Transition rates could be defined starting from the QSD.

• The QSD can be used to analyze the validity of kMC models
and the Eyring-Kramers law, in the small temperature regime.
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Simulating dynamics

There are many other numerical techniques:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: splitting techniques

[Cérou, Guyader, TL, Weare], transition interface sampling [Bolhuis, van

Erp], forward flux sampling [Allen, Valeriani, ten Wolde], milestoning
techniques [Elber, Schuette, Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• Saddle point search techniques [Mousseau, Henkelman] and graph
exploration [Wales]

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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