A compressible two-layer model for transient gas-liquid flows in pipes

Charles Demay^{1,2}

Advisors : Jean-Marc Hérard 1 , Benoit de Laage de Meux 1 , Christian Bourdarias² and Stéphane Gerbi²

¹EDF R&D, Chatou, France ²Université Savoie Mont Blanc - LAMA, Le Bourget-du-Lac, France

> GdR EGRIN May 25th, 2016

[Industrial context and motivations](#page-1-0)

- [Model development](#page-10-0)
- [Entropy inequality and closure laws](#page-26-0)
- [Comments on the closed system](#page-33-0)
- [Mathematical properties](#page-36-0)

Industrial context

• In nuclear power plants, hydraulic systems are used :

• BUT unwanted air pockets could give rise to transient multi-regime air/water flows :

- Requirement : determining the maximum acceptable volume of air in pipes to guarantee operability of pumps
	- Experimental studies : how the pump is affected by the different regimes?
	- \blacktriangleright Modeling/Numerical studies : how air pockets will be transported until the pump ?
- **•** Same issues in wastewater pipes, petroleum industries...

Technical specifications

Our goal is to develop a 1D model satisfying the following constraints :

• Physical constraints

- \triangleright Two-phase flow, gas and liquid
- \blacktriangleright Interactions between both phases
- \triangleright Several regimes : pressurized, stratified and entrapped air pockets
- \blacktriangleright Transition from stratified to pressurized flow

• Geometric constraints

- \blacktriangleright Sloping pipes
- \triangleright Rectangular channels or circular pipes

• Mathematical constraints

- \blacktriangleright Hyperbolicity
- \blacktriangleright Positivity
- \blacktriangleright Entropy inequality
- \triangleright Uniqueness of jump conditions

Some available models

• PFS model by Bourdarias & Gerbi 07'

Two-equation system

- + Hyperbolic
- $+$ Transition
- − Air phase not computed

• Two-layer model by Bourdarias, Ersoy & Gerbi 13'

-
- Barotropic pressure law $P(\rho)$
-
-
-
-

• Two-pressure model by Ransom & Hicks 83'

- Barotropic pressure law $P(\rho)$
-

-
-

-
-
-

-
-
-
-

C. Demay (EDF R&D / LAMA) [A compressible two-layer model](#page-0-0) May 25th, 2016 5 / 26

Some available models

• PFS model by Bourdarias & Gerbi 07'

Two-equation system

- + Hyperbolic
- $+$ Transition
- − Air phase not computed

Two-layer model by Bourdarias, Ersoy & Gerbi 13'

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law $P(\rho)$
- Compressible model
- Shallow-water equations
- Hydrostatic pressure law
- Incompressible model

Four-equation system

- + Air phase computed
- − Not hyperbolic
- − No transition

• Two-pressure model by Ransom & Hicks 83'

- Barotropic pressure law $P(\rho)$
-

-
-

-
-
-
-

C. Demay (EDF R&D / LAMA) [A compressible two-layer model](#page-0-0) May 25th, 2016 5 / 26

Some available models

• PFS model by Bourdarias & Gerbi 07'

Two-equation system

- + Hyperbolic
- $+$ Transition
- − Air phase not computed

Two-layer model by Bourdarias, Ersoy & Gerbi 13'

- Depth averaged isentropic Euler set of equations

- Barotropic pressure law $P(\rho)$
- Compressible model
- Shallow-water equations
- Hydrostatic pressure law
- Incompressible model

Four-equation system

- + Air phase computed
- − Not hyperbolic
- − No transition

• Two-pressure model by Ransom & Hicks 83'

- Depth averaged isentropic Euler set of equations

- Barotropic pressure law $P(\rho)$
- Compressible model

- Depth averaged isentropic Euler set of equations

- Barotropic pressure law $P(\rho)$
- Compressible model

Five-equation system

- + Hyperbolic
- + Air phase computed
- − No transition
- − No gravity effects

C. Demay (EDF R&D / LAMA) [A compressible two-layer model](#page-0-0) May 25th, 2016 5 / 26

Proposal

- Development of a 1D compressible two-layer model following the Ransom & Hicks' approach :
	- I Isentropic Euler set of equations with a barotropic pressure law $P(\rho)$ for both phases
	- \blacktriangleright Depth averaging process
- Adding physical constraints :
	- \blacktriangleright Hydrostatic constraint for water pressure gradient (gravity effects)
	- \triangleright Transition to the pressurized regime
- Investigating mathematical properties :
	- \blacktriangleright Hyperbolicity
	- \blacktriangleright Positivity
	- \blacktriangleright Entropy inequality
	- \triangleright Uniqueness of jump conditions

Proposal

- Development of a 1D compressible two-layer model following the Ransom & Hicks' approach :
	- I Isentropic Euler set of equations with a barotropic pressure law $P(\rho)$ for both phases
	- \triangleright Depth averaging process
- Adding physical constraints :
	- \blacktriangleright Hydrostatic constraint for water pressure gradient (gravity effects)
	- \blacktriangleright Transition to the pressurized regime
- Investigating mathematical properties :
	- \blacktriangleright Hyperbolicity
	- \blacktriangleright Positivity
	- \blacktriangleright Entropy inequality
	- \triangleright Uniqueness of jump conditions

Proposal

- Development of a 1D compressible two-layer model following the Ransom & Hicks' approach :
	- I Isentropic Euler set of equations with a barotropic pressure law $P(\rho)$ for both phases
	- \triangleright Depth averaging process
- Adding physical constraints :
	- \blacktriangleright Hydrostatic constraint for water pressure gradient (gravity effects)
	- \blacktriangleright Transition to the pressurized regime
- Investigating mathematical properties :
	- \blacktriangleright Hyperbolicity
	- \blacktriangleright Positivity
	- \blacktriangleright Entropy inequality
	- \triangleright Uniqueness of jump conditions

[Model development](#page-10-0)

- [Entropy inequality and closure laws](#page-26-0)
- [Comments on the closed system](#page-33-0)
- [Mathematical properties](#page-36-0)

Isentropic Euler set of equations along x :

Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

 \bullet Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_l$.

• Continuity of the normal velocity at the interface :

$$
(\mathbf{u}_1(x,z=h_1^-,t)-\mathbf{u}_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

Impermeability on the walls : $w_1(z = 0) = w_2(z = H) = 0$.

• Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t)=\beta \mathbf{u}_1(x,z=h_1^-,t)+(1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta\in[0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned} &\frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} = M_k, \\ &\frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} = D_k, \end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

- Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.
- \bullet Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_l$.

Continuity of the normal velocity at the interface :

$$
(\mathbf{u}_1(x,z=h_1^-,t)-\mathbf{u}_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

- **I**mpermeability on the walls : $w_1(z=0) = w_2(z=H) = 0$.
- **•** Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t)=\beta \mathbf{u}_1(x,z=h_1^-,t)+(1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta\in[0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned} \frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} &= M_k, \\ \frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} &= D_k, \end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

- Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.
- \bullet Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_l$.

• Continuity of the normal velocity at the interface :

$$
(\mathbf{u}_1(x,z=h_1^-,t)-\mathbf{u}_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

Impermeability on the walls : $w_1(z = 0) = w_2(z = H) = 0$.

• Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t)=\beta \mathbf{u}_1(x,z=h_1^-,t)+(1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta\in[0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned}\n\frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} &= M_k, \\
\frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} &= D_k,\n\end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

 \bullet Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_I$.

• Continuity of the normal velocity at the interface :

$$
(\mathbf{u}_1(x,z=h_1^-,t)-\mathbf{u}_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

Impermeability on the walls : $w_1(z = 0) = w_2(z = H) = 0$.

● Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t)=\beta \mathbf{u}_1(x,z=h_1^-,t)+(1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta\in[0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned}\n\frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} &= M_k, \\
\frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} &= D_k,\n\end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

- Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.
- \bullet Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_I$.

• Continuity of the normal velocity at the interface :

$$
(u_1(x,z=h_1^-,t)-u_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

- **I**mpermeability on the walls : $w_1(z=0) = w_2(z=H) = 0$.
- Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t) = \beta \mathbf{u}_1(x,z=h_1^-,t) + (1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta \in [0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned}\n\frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} &= M_k, \\
\frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} &= D_k,\n\end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

• Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_I$.

• Continuity of the normal velocity at the interface :

$$
(u_1(x,z=h_1^-,t)-u_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

Impermeability on the walls : $w_1(z = 0) = w_2(z = H) = 0$.

● Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t) = \beta \mathbf{u}_1(x,z=h_1^-,t) + (1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta \in [0,1].
$$

Isentropic Euler set of equations along x :

$$
\begin{aligned}\n\frac{\partial \rho_k}{\partial t} + \frac{\partial \rho_k u_k}{\partial x} + \frac{\partial \rho_k w_k}{\partial z} &= M_k, \\
\frac{\partial \rho_k u_k}{\partial t} + \frac{\partial \rho_k u_k^2}{\partial x} + \frac{\partial \rho_k u_k w_k}{\partial z} + \frac{\partial P_k(\rho_k)}{\partial x} &= D_k,\n\end{aligned}
$$

with the hydrostatic constraint : $\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g$.

- Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.
- **•** Interfacial kinetic boundary condition :

$$
\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} = W_I
$$
, with $\mathbf{u}_I = \begin{pmatrix} U_I \\ W_I \end{pmatrix}$ the interfacial velocity.

Continuity of pressure at the interface : $P_1(x, z = h_1^-, t) = P_2(x, z = h_1^+, t) = P_I$.

• Continuity of the normal velocity at the interface :

$$
(\mathbf{u}_1(x,z=h_1^-,t)-\mathbf{u}_2(x,z=h_1^+),t).\mathbf{n}_1=0.
$$

- **I**mpermeability on the walls : $w_1(z = 0) = w_2(z = H) = 0$.
- **O** Closure law for the interfacial velocity :

$$
\mathbf{u}_1(x,t)=\beta \mathbf{u}_1(x,z=h_1^-,t)+(1-\beta)\mathbf{u}_2(x,z=h_1^+,t), \ \beta\in[0,1].
$$

Averaging process

Averaging operators :

$$
\overline{f_k(x,t)} = \frac{1}{h_k} \int_{z_k}^{h_k+z_k} f_k(x,z,t) dz
$$
 with
$$
\begin{cases} z_1 = 0, \\ z_2 = h_1. \end{cases}
$$

and

$$
\widehat{f_k(x,t)} = \frac{\overline{\rho_k f_k}}{\overline{\rho_k}}
$$

Averaged mass conservation equations :

$$
\frac{\partial h_k \overline{\rho_k}}{\partial t} + \frac{\partial h_k \overline{\rho_k}}{\partial x} \widehat{u_k} = h_k \overline{M_k}.
$$

Averaged momentum conservation equations with the closure law $\overline{\rho_k u_k^2} = \overline{\rho_k} \ \hat{u_k}^2$:

$$
\frac{\partial h_k \overline{\rho_k} \; \widehat{u_k}}{\partial t} + \frac{\partial h_k (\overline{\rho_k} \; \widehat{u_k}^2 + \overline{P_k}(\overline{\rho_k}))}{\partial x} - P_l \frac{\partial h_k}{\partial x} = h_k \overline{D_k}.
$$

 \bullet How to satisfy the hydrostatic constraint for water?

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g.
$$

Starting point :

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g \Rightarrow P_1(\rho_1) = P_I(x,t) + \int_z^{h_1} \rho_1(x,s,t)gds.
$$

 \bullet An integration between 0 and h_1 yields :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_I(x, t) + g \int_0^{h_1} \Big(\int_z^{h_1} \rho_1(x, s, t) ds \Big) dz.
$$

An integration by part of the double integral provides :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_l + g \left[z \int_z^{h_1} \rho_1 ds \right]_0^{h_1} + g \int_0^{h_1} \rho_1 z dz,
$$

= $h_1 P_l + \overline{\rho_1 z} gh_1.$

With the closure law $\overline{\rho_1 z} = \overline{\rho_1} \; \overline{z} = \overline{\rho_1} \frac{h_1}{2}$, it comes :

$$
\overline{P_1}=P_1+\overline{\rho_1}g\frac{h_1}{2}.
$$

The obtained averaged hydrostatic constraint closes $P_I.$

 $\hskip 1.6cm \bullet$ The momentum conservation equation for water under hydrostatic constraint writes :

Starting point :

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g \Rightarrow P_1(\rho_1) = P_I(x,t) + \int_z^{h_1} \rho_1(x,s,t)gds.
$$

 \bullet An integration between 0 and h_1 yields :

٠

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_I(x, t) + g \int_0^{h_1} \Big(\int_z^{h_1} \rho_1(x, s, t) ds \Big) dz.
$$

An integration by part of the double integral provides :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_l + g \left[z \int_z^{h_1} \rho_1 ds \right]_0^{h_1} + g \int_0^{h_1} \rho_1 z dz,
$$

= $h_1 P_l + \overline{\rho_1 z} gh_1.$

With the closure law $\overline{\rho_1 z} = \overline{\rho_1} \; \overline{z} = \overline{\rho_1} \frac{h_1}{2}$, it comes :

$$
\overline{P_1}=P_1+\overline{\rho_1}g\frac{h_1}{2}.
$$

The obtained averaged hydrostatic constraint closes $P_I.$

 $\hskip 1.6cm \bullet$ The momentum conservation equation for water under hydrostatic constraint writes :

Starting point :

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g \Rightarrow P_1(\rho_1) = P_I(x,t) + \int_z^{h_1} \rho_1(x,s,t)gds.
$$

 \bullet An integration between 0 and h_1 yields :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_I(x, t) + g \int_0^{h_1} \Big(\int_z^{h_1} \rho_1(x, s, t) ds \Big) dz.
$$

An integration by part of the double integral provides :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_l + g \left[z \int_z^{h_1} \rho_1 ds \right]_0^{h_1} + g \int_0^{h_1} \rho_1 z dz,
$$

= $h_1 P_l + \overline{\rho_1 z} gh_1.$

With the closure law $\overline{\rho_1 z} = \overline{\rho_1} \; \overline{z} = \overline{\rho_1} \frac{h_1}{2}$, it comes :

$$
\overline{P_1}=P_1+\overline{\rho_1}g\frac{h_1}{2}.
$$

The obtained averaged hydrostatic constraint closes $P_I.$

 $\hskip 1.6cm \bullet$ The momentum conservation equation for water under hydrostatic constraint writes :

Starting point :

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g \Rightarrow P_1(\rho_1) = P_I(x,t) + \int_z^{h_1} \rho_1(x,s,t)gds.
$$

 \bullet An integration between 0 and h_1 yields :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_I(x, t) + g \int_0^{h_1} \Big(\int_z^{h_1} \rho_1(x, s, t) ds \Big) dz.
$$

An integration by part of the double integral provides :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_l + g \left[z \int_z^{h_1} \rho_1 ds \right]_0^{h_1} + g \int_0^{h_1} \rho_1 z dz,
$$

= $h_1 P_l + \overline{\rho_1 z} g h_1.$

With the closure law $\overline{\rho_1 z} = \overline{\rho_1} \; \overline{z} = \overline{\rho_1} \frac{h_1}{2}$, it comes :

$$
\overline{P_1} = P_1 + \overline{\rho_1} g \frac{h_1}{2}.
$$

The obtained averaged hydrostatic constraint closes $P_I.$

• The momentum conservation equation for water under hydrostatic constraint writes :

Starting point :

$$
\frac{\partial P_1(\rho_1)}{\partial z} = -\rho_1 g \Rightarrow P_1(\rho_1) = P_I(x,t) + \int_z^{h_1} \rho_1(x,s,t)gds.
$$

 \bullet An integration between 0 and h_1 yields :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_I(x, t) + g \int_0^{h_1} \Big(\int_z^{h_1} \rho_1(x, s, t) ds \Big) dz.
$$

An integration by part of the double integral provides :

$$
\int_0^{h_1} P_1(\rho_1) dz = h_1 P_l + g \left[z \int_z^{h_1} \rho_1 ds \right]_0^{h_1} + g \int_0^{h_1} \rho_1 z dz,
$$

= $h_1 P_l + \overline{\rho_1 z} gh_1.$

With the closure law $\overline{\rho_1 z} = \overline{\rho_1} \; \overline{z} = \overline{\rho_1} \frac{h_1}{2}$, it comes :

$$
\overline{P_1} = P_1 + \overline{\rho_1} g \frac{h_1}{2}.
$$

The obtained averaged hydrostatic constraint closes $P_I.$

• The momentum conservation equation for water under hydrostatic constraint writes :

$$
\frac{\partial h_1\overline{\rho_1}}{\partial t}+\frac{\partial}{\partial x}h_1(\overline{\rho_1} \ \widehat{u_1}^2+\overline{\rho_1})-(\overline{\rho_1}-\overline{\rho_1}g\frac{h_1}{2})\frac{\partial h_1}{\partial x}=h_1\overline{D_1}.
$$

Resulting averaged system

Omitting the operator notations, the five-equation system corresponding to the five unknowns $(h_1, \rho_1, \rho_2, u_1, u_2)$ writes :

$$
\begin{aligned}\n\frac{\partial h_1}{\partial t} + U_I \frac{\partial h_1}{\partial x} &= \Phi_1, \\
\frac{\partial h_k \rho_k}{\partial t} + \frac{\partial h_k \rho_k u_k}{\partial x} &= M_k, \\
\frac{\partial h_1 \rho_1 u_1}{\partial t} + \frac{\partial h_1 (\rho_1 u_1^2 + P_1(\rho_1))}{\partial x} - \left(P_1(\rho_1) - \rho_1 g \frac{h_1}{2} \right) \frac{\partial h_1}{\partial x} &= D_1, \\
\frac{\partial h_2 \rho_2 u_2}{\partial t} + \frac{\partial h_2 (\rho_2 u_2^2 + P_2(\rho_2))}{\partial x} - \left(P_1(\rho_1) - \rho_1 g \frac{h_1}{2} \right) \frac{\partial h_2}{\partial x} &= D_2, \\
&= H - h_1.\n\end{aligned}
$$

 \bullet Closure laws for U_1 and the source terms?

- Assumption : $U_1 = \beta u_1 + (1 \beta) u_2, \ \beta \in [0, 1].$
- \blacktriangleright Entropy inequality.

with $h₂$

Resulting averaged system

Omitting the operator notations, the five-equation system corresponding to the five unknowns $(h_1, \rho_1, \rho_2, u_1, u_2)$ writes :

$$
\begin{aligned}\n\frac{\partial h_1}{\partial t} + U_1 \frac{\partial h_1}{\partial x} &= \Phi_1, \\
\frac{\partial h_{k}\rho_k}{\partial t} + \frac{\partial h_{k}\rho_k u_k}{\partial x} &= M_k, \\
\frac{\partial h_1 \rho_1 u_1}{\partial t} + \frac{\partial h_1 (\rho_1 u_1^2 + P_1(\rho_1))}{\partial x} - \left(P_1(\rho_1) - \rho_1 g \frac{h_1}{2} \right) \frac{\partial h_1}{\partial x} &= D_1, \\
\frac{\partial h_2 \rho_2 u_2}{\partial t} + \frac{\partial h_2 (\rho_2 u_2^2 + P_2(\rho_2))}{\partial x} - \left(P_1(\rho_1) - \rho_1 g \frac{h_1}{2} \right) \frac{\partial h_2}{\partial x} &= D_2, \\
H - h_1\n\end{aligned}
$$

with $h_2 = H - h_1$.

- \bullet Closure laws for U_1 and the source terms?
	- Assumption : $U_1 = \beta u_1 + (1 \beta) u_2, \ \beta \in [0, 1].$
	- \blacktriangleright Entropy inequality.

[Model development](#page-10-0)

- [Entropy inequality and closure laws](#page-26-0)
- [Comments on the closed system](#page-33-0)
- [Mathematical properties](#page-36-0)

a Define

 $E_{c,k} = \frac{1}{2} h_k \rho_k u_k^2$ kinetic energy of phase k 2^{2} 2^{1

$$
E_{t,k} = h_k \rho_k \Psi_k(\rho_k)
$$

rmodynamic energy of phase
with $\Psi'_k(\rho_k) = \frac{P_k(\rho_k)}{P_k(\rho_k)}$

with
$$
\Psi'_k(\rho_k) = \frac{P_k(\rho_k)}{\rho_k^2}
$$

 $E_{t,k} = h_k \rho_k \Psi_k(\rho_k)$ $E_{p,1} = \frac{1}{2} \rho_1 gh_1^2$

and

Adding all the contributions, the total energy equation writes

 $\frac{\partial}{\partial t} (E_1 + E_2) + \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x} = f_2 D_1 + f_3 \Phi_1 + f_4 M_1,$

with f_i some given functions depending on the state variable.

• Set $f_1 = 0$ to get a conservative form :

$$
f_1 = \beta(P_2 - P_1 - \rho_1 g \frac{h_1}{2}) = 0 \Rightarrow \beta = 0 \text{ and } U_1 = u_2
$$

Set $\Phi_1 = -f_3$ to get an entropy inequality.

a Define

 $E_{c,k} = \frac{1}{2} h_k \rho_k u_k^2$ $E_{t,k} = h_k \rho_k \Psi_k(\rho_k)$ $E_{p,1} = \frac{1}{2}$ 2^{2} 2^{1 ρ_1 gh $_1^2$ with $\Psi_{k}'(\rho_{k}) = \frac{P_{k}(\rho_{k})}{\rho_{k}^{2}}$ k and

> $E_1 = E_{c,1} + E_{t,1} + E_{p,1}$ $E_2 = E_{c,2} + E_{t,2}$ total energy of phase 1 total energy of phase 2

• Adding all the contributions, the total energy equation writes

$$
\frac{\partial}{\partial t}(E_1+E_2)+\frac{\partial}{\partial x}(u_1E_1+u_2E_2+u_1h_1P_1+u_2h_2P_2)+f_1\frac{\partial h_1}{\partial x}=f_2D_1+f_3\Phi_1+f_4M_1,
$$

with f_i some given functions depending on the state variable.

• Set $f_1 = 0$ to get a conservative form :

$$
f_1 = \beta(P_2 - P_1 - \rho_1 g \frac{h_1}{2}) = 0 \Rightarrow \beta = 0 \text{ and } U_1 = u_2
$$

Set $\Phi_1 = -f_3$ to get an entropy inequality.

a Define

 $E_{c,k} = \frac{1}{2} h_k \rho_k u_k^2$ $E_{t,k} = h_k \rho_k \Psi_k(\rho_k)$ $E_{p,1} = \frac{1}{2}$ 2^{2} 2^{1 ρ_1 gh $_1^2$ with $\Psi_{k}'(\rho_{k}) = \frac{P_{k}(\rho_{k})}{\rho_{k}^{2}}$ k and

> $E_1 = E_{c,1} + E_{t,1} + E_{p,1}$ $E_2 = E_{c,2} + E_{t,2}$ total energy of phase 1 total energy of phase 2

• Adding all the contributions, the total energy equation writes

$$
\frac{\partial}{\partial t}(E_1+E_2)+\frac{\partial}{\partial x}(u_1E_1+u_2E_2+u_1h_1P_1+u_2h_2P_2)+f_1\frac{\partial h_1}{\partial x}=f_2D_1+f_3\Phi_1+f_4M_1,
$$

with f_i some given functions depending on the state variable.

• Set $f_1 = 0$ to get a conservative form :

$$
f_1 = \beta (P_2 - P_1 - \rho_1 g \frac{h_1}{2}) = 0 \Rightarrow \beta = 0
$$
 and $U_1 = u_2$

Set $\Phi_1 = -f_3$ to get an entropy inequality.

a Define

 $E_{c,k} = \frac{1}{2} h_k \rho_k u_k^2$ $E_{t,k} = h_k \rho_k \Psi_k(\rho_k)$ $E_{p,1} = \frac{1}{2}$ 2^{2} 2^{1 ρ_1 gh $_1^2$ with $\Psi_{k}'(\rho_{k}) = \frac{P_{k}(\rho_{k})}{\rho_{k}^{2}}$ k and

 $E_1 = E_{c,1} + E_{t,1} + E_{p,1}$ $E_2 = E_{c,2} + E_{t,2}$ total energy of phase 1 total energy of phase 2

• Adding all the contributions, the total energy equation writes

$$
\frac{\partial}{\partial t}(E_1+E_2)+\frac{\partial}{\partial x}(u_1E_1+u_2E_2+u_1h_1P_1+u_2h_2P_2)+f_1\frac{\partial h_1}{\partial x}=f_2D_1+f_3\Phi_1+f_4M_1,
$$

with f_i some given functions depending on the state variable.

• Set $f_1 = 0$ to get a conservative form :

$$
f_1 = \beta (P_2 - P_1 - \rho_1 g \frac{h_1}{2}) = 0 \Rightarrow \beta = 0 \text{ and } U_1 = u_2
$$

Set $\Phi_1 = -f_3$ to get an entropy inequality. $D_1 = -f_2$ $M_1 = -f_4$

One obtains :

$$
\Phi_1 = \lambda_p (P_1 - \rho_1 g \frac{h_1}{2} - P_2) = \lambda_p (P_1 - P_2),
$$

\n
$$
M_k = (-1)^k \lambda_m \Big(\frac{P_1 + \rho_1 g \frac{h_1}{2}}{\rho_1} + \Psi_1 \Big) - \Big(\frac{P_2}{\rho_2} + \Psi_2 \Big) + \frac{u_2^2 - u_1^2}{2} \Big),
$$

\n
$$
D_k = (-1)^k \lambda_u (u_1 - u_2).
$$

where λ_p , λ_m and λ_u are positive bounded functions which depend on the state variable $(h_1, \rho_1, \rho_2, u_1, u_2).$

• The entropy inequality thus writes :

$$
\frac{\partial \mathcal{E}}{\partial t} + \frac{\partial \mathcal{G}}{\partial x} \leq 0
$$

where the entropy $\mathcal E$ and the entropy flux $\mathcal G$ are defined by

$$
\mathcal{E} = E_{c,1} + E_{p,1} + E_{t,1} + E_{c,2} + E_{t,2},
$$

\n
$$
\mathcal{G} = u_1(E_{c,1} + E_{p,1} + E_{t,1}) + u_2(E_{c,2} + E_{t,2}) + u_1 h_1 P_1 + u_2 h_2 P_2,
$$

with

$$
E_{c,k} = \frac{1}{2} h_k \rho_k u_k^2, \ E_{t,k} = h_k \rho_k \Psi_k(\rho_k), \ E_{p,1} = \rho_1 g \frac{h_1^2}{2}.
$$

Resulting averaged closed system

1D compressible two-layer model for air/water flows

$$
\frac{\partial h_1}{\partial t} + u_2 \frac{\partial h_1}{\partial x} = \lambda_\rho (P_1 - \rho_1 g \frac{h_1}{2} - P_2) = \lambda_\rho (P_1 - P_2),
$$
\n
$$
\frac{\partial h_1 \rho_1}{\partial t} + \frac{\partial h_1 \rho_1 u_1}{\partial x} = 0,
$$
\n
$$
\frac{\partial h_2 \rho_2}{\partial t} + \frac{\partial h_2 \rho_2 u_2}{\partial x} = 0,
$$
\n
$$
\frac{\partial h_1 \rho_1 u_1}{\partial t} + \frac{\partial h_1 (\rho_1 u_1^2 + P_1)}{\partial x} - (P_1 - \rho_1 g \frac{h_1}{2}) \frac{\partial h_1}{\partial x} = \lambda_u (u_2 - u_1),
$$
\n
$$
\frac{\partial h_2 \rho_2 u_2}{\partial t} + \frac{\partial h_2 (\rho_2 u_2^2 + P_2)}{\partial x} - (P_1 - \rho_1 g \frac{h_1}{2}) \frac{\partial h_2}{\partial x} = \lambda_u (u_1 - u_2).
$$

- [Model development](#page-10-0)
- [Entropy inequality and closure laws](#page-26-0)
- [Comments on the closed system](#page-33-0)
- [Mathematical properties](#page-36-0)

Consistency with the shallow water equations

• Pressure relaxation. Consider the following system :

$$
\frac{\partial h_1}{\partial t} = \lambda_p (P_I - P_2)
$$

$$
\frac{\partial h_k \rho_k}{\partial t} = 0.
$$

Easy calculations yield :

$$
P_1 \underset{t \to +\infty}{\longrightarrow} P_2.
$$

Without source terms, using $P_I = P_1 - \rho_1 g \frac{h_1}{2}$, mass and momentum conservation equations for water writes :

$$
\frac{\partial h_1 \rho_1}{\partial t} + \frac{\partial h_1 \rho_1 u_1}{\partial x} = 0,
$$

$$
\frac{\partial h_1 \rho_1 u_1}{\partial t} + \frac{\partial h_1 \rho_1 u_1^2}{\partial x} + \frac{\partial \rho_1 g \frac{h_1^2}{2}}{\partial x} + h_1 \frac{\partial P_l}{\partial x} = 0.
$$

Asymptotically, it may be read as a compressible shallow water system with variable atmospheric pressure $P_2(x, t)$.

Comments on the closed system

Comparison with the two-fluid two-pressure models.

- \triangleright Same structure as a Baer-Nunziato type model obtained with statistical averaging.
- **►** Statistical framework : $\beta \in \{0, 1, \frac{h_1 \rho_1}{h_1 \rho_1 + h_2 \rho_2}\}.$
- \blacktriangleright Significant mathematical properties.

• Towards pressurized flows.

Formally, considering $h_1 = H$ one obtains :

$$
\frac{\partial \rho_1}{\partial t} + \frac{\partial \rho_1 u_1}{\partial x} = 0,
$$

$$
\frac{\partial \rho_1 u_1}{\partial t} + \frac{\partial (\rho_1 u_1^2 + P_1(\rho_1))}{\partial x} = 0,
$$

as soon as the source terms vanish when $h_1 = H$.

• Sloping pipes

Constant slope : replace g by $g \cos \theta$ in the closure laws.

Variable slope : curvilinear formulation ?

- [Model development](#page-10-0)
- [Entropy inequality and closure laws](#page-26-0)
- [Comments on the closed system](#page-33-0)
- [Mathematical properties](#page-36-0)

Mathematical properties : hyperbolicity

We study the homogeneous system :

$$
\frac{\partial h_1}{\partial t} + u_2 \frac{\partial h_1}{\partial x} = 0,
$$
\n
$$
\frac{\partial h_{k} \rho_k}{\partial t} + \frac{\partial h_{k} \rho_k u_k}{\partial x} = 0,
$$
\n
$$
\frac{\partial h_{k} \rho_k u_k}{\partial t} + \frac{\partial h_{k} (\rho_k u_k^2 + P_k)}{\partial x} - (P_1 - \rho_1 g \frac{h_1}{2}) \frac{\partial h_k}{\partial x} = 0.
$$

Hyperbolicity

The homogeneous system is hyperbolic under the non-resonant condition :

$$
|u_1-u_2|\neq c_1.
$$

Its eigenvalues are unconditionally real and given by

$$
\lambda_1 = u_2, \n\lambda_2 = u_2 - c_2, \ \lambda_3 = u_2 + c_2, \n\lambda_4 = u_1 - c_1, \ \lambda_5 = u_1 + c_1.
$$

O Remarks :

- \blacktriangleright The eigenstructure can be easily detailed
- **►** In the context of air/water flows, $c_1 \approx 1500$ $m.s^{-1}$ and the resonant situation is clearly out of the scope of interest.

Mathematical properties : characteristic fields

Nature of characteristic fields and Riemann invariants

The field associated with the 1-wave λ_1 is linearly degenerate.

The fields associated with the p-waves λ_p , $p = 2, ..., 5$, are genuinely nonlinear.

If I^P denotes the vector of p-Riemann invariants, one obtains :

$$
I^{1} = (u_{2}, m_{1}(u_{1} - u_{2}), m_{1}u_{1}(u_{1} - u_{2}) + h_{1}P_{1} + h_{2}P_{2}, \frac{P_{1} + \rho_{1}g^{\frac{h_{1}}{2}}}{\rho_{1}} + \Psi_{1} + \frac{(u_{1} - u_{2})^{2}}{2}),
$$

\n
$$
I^{2} = (h_{1}, \rho_{1}, u_{1}, u_{2} + \int \frac{c_{2}(\rho_{2})}{\rho_{2}} d\rho_{2}), \quad I^{3} = (h_{1}, \rho_{1}, u_{1}, u_{2} - \int \frac{c_{2}(\rho_{2})}{\rho_{2}} d\rho_{2}),
$$

\n
$$
I^{4} = (h_{1}, \rho_{2}, u_{2}, u_{1} + \int \frac{c_{1}(\rho_{1})}{\rho_{1}} d\rho_{1}), \quad I^{5} = (h_{1}, \rho_{2}, u_{2}, u_{1} - \int \frac{c_{1}(\rho_{1})}{\rho_{1}} d\rho_{1}),
$$

C. Demay (EDF R&D / LAMA) [A compressible two-layer model](#page-0-0) May 25th, 2016 21 / 26

Mathematical properties : jump conditions

Jump conditions for genuine non-linear fields

For all genuine non-linear fields corresponding to the p-waves, $p = 2, ..., 5$, the Rankine-Hugoniot iump conditions across a single discontinuity of speed σ write

> $[h_k] = 0,$ $[m_k (u_k - \sigma)] = 0,$ $[m_k u_k (u_k - \sigma) + h_k P_k] = 0,$

where brackets [.] denote the difference between the states on both sides of the discontinuity.

- Across the linearly degenerate field :
	- \blacktriangleright h_1 may jump.
	- The non-conservative products $u_2 \partial_x h_1$ and $(P_1 \rho_1 g \frac{h_1}{2}) \partial_x h_1$ are well defined using the available 1-Riemann invariants.
- One can build analytical solutions including rarefaction waves, shock waves and contact discontinuities.

Mathematical properties : positivity

Positivity

Let L and T be two positive and real constants. Assume that u_k , $\partial_x u_k$ and the source terms belong to $L^{\infty}([0, L] \times [0, T])$ for $k = 1, 2$. Then, admissible inlet boundary conditions lead to

$$
h_k(t, x) \in [0, H], \quad \forall (x, t) \in [0, L] \times [0, T],
$$

$$
\rho_k(t, x) \geq 0, \quad \forall (x, t) \in [0, L] \times [0, T],
$$

when restricting ourselves to regular solutions.

Classical result considering regular solutions of the equation : \bullet

$$
\frac{\partial h_1}{\partial t} + u_2 \frac{\partial h_1}{\partial x} = \Phi_1,\n\frac{\partial h_{k}\rho_k}{\partial t} + u_k \frac{\partial h_{k}\rho_k}{\partial x} + h_k \rho_k \frac{\partial u_k}{\partial x} = M_k.
$$

Conclusion

• This 1D compressible two-layer model satisfies :

- \blacktriangleright Physical constraints
	- \star Gas-liquid model
	- \star Several regimes : stratified, pressurized, entrapped air pockets (formally)
	- \star Transition between the regimes (formally)
- \blacktriangleright Geometric constraints
	- \star Sloping pipes (constant angle only)
	- \star Rectangular channels and circular pipes with variable cross-section
- \blacktriangleright Mathematical constraints
	- \star Hyperbolicity
	- ***** Positivity of h_k and ρ_k
	- \star Entropy inequality
	- \star Uniqueness of jump conditions
- The current work involves :
	- \blacktriangleright Development of a numerical solver
		- \star With large time steps : implicit-explicit schemes to avoid the acoustic CFL condition
		- ★ Robust enough to deal with vanishing phases, $h_k \rightarrow 0$
	- \blacktriangleright Validation against experimental data

Thank you for your attention

Contact : charles.demay@edf.fr

Submitted to Continuum Mechanics and Thermodynamics journal : A compressible two-layer model for transient gas-liquid flows in pipes. C. Demay, J.-M. Hérard (dec. 2015).

Circular pipe with variable cross-section

1D compressible two-layer model for air/water flows in pipe with variable cross-section

$$
\frac{\partial A_1}{\partial t} + u_2 \frac{\partial A_1}{\partial x} = \lambda_\rho (P_1 - \rho_1 g \ell_1 - P_2) + \frac{\theta_k}{2\pi} (\frac{\partial S}{\partial t} + u_2 \frac{\partial S}{\partial x}),
$$
\n
$$
\frac{\partial A_{k}\rho_k}{\partial t} + \frac{\partial A_{k}\rho_k u_k}{\partial x} = 0,
$$
\n
$$
\frac{\partial A_{1}\rho_1 u_1}{\partial t} + \frac{\partial A_{1}(\rho_1 u_1^2 + P_1)}{\partial x} - (P_1 - \rho_1 g \ell_1) \frac{\partial A_1}{\partial x} = \lambda_u (u_2 - u_1) + \rho_1 g \ell_1 \frac{\theta_1}{2\pi} \frac{\partial S}{\partial x},
$$
\n
$$
\frac{\partial A_{2}\rho_2 u_2}{\partial t} + \frac{\partial A_{2}(\rho_2 u_2^2 + P_2)}{\partial x} - (P_1 - \rho_1 g \ell_1) \frac{\partial A_2}{\partial x} = \lambda_u (u_1 - u_2) + (P_2 - (P_1 - \rho_1 g \ell_1)) \frac{\theta_2}{2\pi} \frac{\partial S}{\partial x}.
$$