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@ Industrial context and motivations
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Industrial context

@ In nuclear power plants, hydraulic systems are used :

water

Pressurized flow

@ BUT unwanted air pockets could give rise to transient multi-regime air/water flows :

- ﬁ m

Stratified flow Entrapped air pockets Bubbly flow

@ Requirement : determining the maximum acceptable volume of air in pipes to guarantee
operability of pumps

> Experimental studies : how the pump is affected by the different regimes?
> Modeling/Numerical studies : how air pockets will be transported until the
pump ?

@ Same issues in wastewater pipes, petroleum industries...
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Technical specifications
Our goal is to develop a 1D model satisfying the following constraints :

o Physical constraints

Two-phase flow, gas and liquid

Interactions between both phases

Several regimes : pressurized, stratified and entrapped air pockets
Transition from stratified to pressurized flow

vy vy VvVYy

o Geometric constraints
» Sloping pipes
» Rectangular channels or circular pipes

o Mathematical constraints
» Hyperbolicity
> Positivity
> Entropy inequality
» Uniqueness of jump conditions
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Some available models

o PFS model by Bourdarias & Gerbi 07’

Not computed . . Two-equation system
- Depth averaged isentropic Euler

set of equations + Hyperbolic
- Shallow-water equations - Barotropic pressure law P(p) + Transition

- Hydrostatic pressure law - Compressible model — Air phase not computed
- Incompressible model
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Some available models

o PFS model by Bourdarias & Gerbi 07’

Not computed . . Two-equation system
- Depth averaged isentropic Euler

set of equations + Hyperbolic
- Shallow-water equations - Barotropic pressure law P(p) + Transition

- Hydrostatic pressure law - Compressible model
- Incompressible model

— Air phase not computed

o Two-layer model by Bourdarias, Ersoy & Gerbi 13’

- Depth averaged isentropic Euler set of equations

- Barotropic pressure law P(p) Four-equation system
- Compressible model + Air phase computed
- Shallow-water equations — Not hyperbolic

- Hydrostatic pressure law — No transition

- Incompressible model
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Some available models

o PFS model by Bourdarias & Gerbi 07’

Two-equation system
+ Hyperbolic

Not computed . .
- Depth averaged isentropic Euler

set of equations
- Shallow-water equations - Barotropic pressure law P(p) + Transition
- Hydrostatic pressure law - Compressible model — Air phase not computed
- Incompressible model

o Two-layer model by Bourdarias, Ersoy & Gerbi 13’

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law P(p) Four-equation system

- Compressible model + Air phase computed
— Not hyperbolic

- Hydrostatic pressure law — No transition
- Incompressible model

- Shallow-water equations

o Two-pressure model by Ransom & Hicks 83’

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law P(p)
- Compressible model + Hyperbolic

+ Air phase computed

Five-equation system

- Depth averaged isentropic Euler set of equations .
- Barotropic pressure law P(p) — No transition
- Compressible model — No gravity effects
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Proposal

@ Development of a 1D compressible two-layer model following the Ransom &
Hicks' approach :
> lIsentropic Euler set of equations with a barotropic pressure law P(p) for both
phases
» Depth averaging process
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Proposal

@ Development of a 1D compressible two-layer model following the Ransom &
Hicks' approach :

> lIsentropic Euler set of equations with a barotropic pressure law P(p) for both
phases
» Depth averaging process

o Adding physical constraints :

» Hydrostatic constraint for water pressure gradient (gravity effects)
» Transition to the pressurized regime
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Proposal

@ Development of a 1D compressible two-layer model following the Ransom &
Hicks' approach :
> lIsentropic Euler set of equations with a barotropic pressure law P(p) for both
phases
» Depth averaging process

o Adding physical constraints :

» Hydrostatic constraint for water pressure gradient (gravity effects)
» Transition to the pressurized regime

@ Investigating mathematical properties :
Hyperbolicity

Positivity

Entropy inequality

Uniqueness of jump conditions

vVvyVvVvyy
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© Model development

C. Demay (EDF R&D / LAMA) A compressible two-layer model



Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

= My,
air, k=2 ha ot T Tox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
T_) ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.
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Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

= My,
air, k=2 ha ot T Tox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
T_) ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

@ Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.
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Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

= My,
air, k=2 ha ot T Tox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
1~_> ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

@ Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

@ Interfacial kinetic boundary condition :

h h
E-I—U/Q_W/, WithuI:( ‘l;lvl
1

= the interfacial velocity.
ot Ox
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Local governing equations
Isentropic Euler set of equations along x :

0] 0, 0,
9pi Pk Uk PrWk _ My,

air, k =2 ha ot Ox + oz
n
H : , Opruk dpru? 4 P OP(pi) _ Dy
%_) : ot Ox oz Ox ’
o
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

@ Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

@ Interfacial kinetic boundary condition :

oh oh
a—tl + U,a—x1 = W, with u; = ( ‘l;jvll ) the interfacial velocity.

@ Continuity of pressure at the interface : Py(x,z = hy ,t) = P2(x,z = hj, t) = P;.
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Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

= My,
air, k=2 ha ot T Tox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
1~_> ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

@ Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

@ Interfacial kinetic boundary condition :

oh oh
a—tl + U,a—x1 = W, with u; = ( ‘l;jvll ) the interfacial velocity.

@ Continuity of pressure at the interface : Py(x,z = hy ,t) = P2(x,z = hj, t) = P;.

@ Continuity of the normal velocity at the interface :

(u1(x,z = h7,t) —u2(x,z = h{), t).n; = 0.
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Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

- = M,,
air, k =2 ha ot ox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
1~_> ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

@ Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

@ Interfacial kinetic boundary condition :

oh oh
a—tl + Ula—x1 = W, with u; = ( ll}jVI, ) the interfacial velocity.

@ Continuity of pressure at the interface : Py(x,z = hy ,t) = P2(x,z = hj, t) = P;.

@ Continuity of the normal velocity at the interface :
(u1(x,z = h7,t) —u2(x,z = h{), t).n; = 0.

@ Impermeability on the walls : wi(z = 0) = we(z = H) = 0.
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Local governing equations

Isentropic Euler set of equations along x :

Opi | Opruk | Oprwi

- = M,,
air, k =2 ha ot ox oz .
H ! dpkux  Opkt  dprugwx  OP
. N piui 0Pkl Opuwic k(Pk):Dh
1~_> ot ox o0z Ox
O X
with the hydrostatic constraint : 8P(197(Zpl) = —p18.

Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

@ Interfacial kinetic boundary condition :

oh oh
a—tl + Ula—x1 = W, with u; = ( ll}jVI, ) the interfacial velocity.

Continuity of pressure at the interface : Py(x,z = hy ,t) = Pa(x,z = hi,t) = P.

Continuity of the normal velocity at the interface :

(u1(x,z = h7,t) —u2(x,z = h{), t).n; = 0.

Impermeability on the walls : wi(z =0) = wa(z = H) = 0.

Closure law for the interfacial velocity :

u(x,t) = Bur(x,z = hy,t) + (1 - Bluz(x,z = hIr, t), B €[0,1].

C. Demay (EDF R&D / LAMA) A compressible two-layer model May 25th, 2016 8 /26



Averaging process

@ Averaging operators :

1 hi+z) —
fe(x,t) = . / fi(x, z, t)dz with {2 _ 2’1
k Jzy - .

and

fuet) = Pl

@ Averaged mass conservation equations :
Ohipr | Ohipr
[ + R

= hM,.
at Ax Kk

@ Averaged momentum conservation equations with the closure law pkuf =Dk a2

Ohypx i Oh(Pr G2 + Pr(pk dh —
WPk i K(Pk K «(Pk)) p, M _ by
ot ox
@ How to satisfy the hydrostatic constraint for water ?

OP1(p1) _

oy —p1§.

C. Demay (EDF R&D / LAMA) A compressible two-layer model May 25th, 2016 9 /26



Hydrostatic constraint

@ Starting point :
P1(p1) _

hy
1) — g = Palen) = Pilx )+ [ pales. e
z
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Hydrostatic constraint

@ Starting point :

P h
PP — i = Pulpn) = Pilx )+ [ onls s
z

@ An integration between 0 and h; yields :

h1 h1 h1
/ P1(p1)dz = h1Pi(x, t) + g/ (/ p1(x,s, t)ds) dz.
0 0 z
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Hydrostatic constraint

@ Starting point :

OPi(p1) _

hy
o2 —p18 = Pi(p1) = Pi(x,t) +/ p1(x, s, t)gds.
z

@ An integration between 0 and h; yields :
h1 h1 h1
/ P1(p1)dz = h1Pi(x, t) + g/ (/ p1(x,s, t)ds) dz.
] ] z

@ An integration by part of the double integral provides :

h1 hy
/ P1(p1)dz =mP;+g |:Z/ p1d5j|
0 z

= h1P; + p1zghs.

ha

hy
+g/ ﬂlZdZ7
0 0
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Hydrostatic constraint

@ Starting point :

OPi(p1) _
0z

@ An integration between 0 and h; yields :

hy
—p18 = Pi(p1) = Pi(x,t) +/ p1(x, s, t)gds.
z

h1 h1 h1
/ P1(p1)dz = h1Pi(x, t) + g/ (/ p1(x,s, t)ds) dz.
0 0 z

@ An integration by part of the double integral provides :

h1 hy
/ P1(p1)dz =mP;+g |:Z/ p1d5j|
0 z

= h1P; + p1zghs.

ha
0

hy

@ With the closure law p1z = p1 z = p1 3, it comes :

— h
P1:P/+)’Tlg?1-

The obtained averaged hydrostatic constraint closes P;.
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Hydrostatic constraint

@ Starting point :

OPi(p1) _

hy
o2 —p18 = Pi(p1) = Pi(x,t) +/ p1(x, s, t)gds.
z

@ An integration between 0 and h; yields :
h1 h1 h1
/ P1(p1)dz = h1Pi(x, t) + g/ (/ p1(x,s, t)ds) dz.
] ] z

@ An integration by part of the double integral provides :

h1 hy
/ P1(p1)dz =mP;+g |:Z/ p1d$j|
0 z

= h1P; + p1zghs.

ha

hy
+g/ ﬂlZdZ7
0 0

hy

@ With the closure law p1z = p1 z = p1 3, it comes :

— h
P1:P/+)’Tlg?1-

The obtained averaged hydrostatic constraint closes P;.

@ The momentum conservation equation for water under hydrostatic constraint writes :
Omprin 0, 5 = = __ hioh =
—F———+ —h n*+P1)—(P1— —)— = mDxs.
ot ox 1(p1 1 1) — (P1 — p1g > ) Ox 1D1
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Resulting averaged system

@ Omitting the operator notations, the five-equation system corresponding to the five
unknowns (hi, p1, p2, U1, U2) writes :

oh oh

8t1 Y 671 = o1

oh oh

6h1;tlLI1 n 8h1(p1u§ai- P1(p1)) _ (Pl(Pl) — gk : )‘?9’;1 D1,
8/728pt2u2 N ahz(qugaj P2(p2)) (Pl(Pl) g %)% — D,

with h, = H — hy.
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Resulting averaged system

@ Omitting the operator notations, the five-equation system corresponding to the five

unknowns (hi, p1, p2, U1, U2) writes :

aahtl + U %hl =

oh dh

#ﬂk + % = My,

3h1;tlul N 8h1(p1u§ai— Pi(p1)) (pl(pl) g )
8h28pt2u2 N 8hz(qu§61 Pa(p2)) (pl(pl) - p1gh2 )

with h, = H — hy.
@ Closure laws for U, and the source terms?

> Assumption : U= Buy + (1 — B)uz, S € [0,1].

» Entropy inequality.
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© Entropy inequality and closure laws
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Entropy inequality and closure laws

@ Define
Eck = 2hipiu? Etk = hipiVi(pk) Ep1 = 1p1gh?
kinetic energy of phase k  thermodynamic energy of phase k  gravitational energy of phase 1
with Wy (i) = %ﬁf:“
and

Eir=Ec1+E1+Epn Ex=E.>+ E:2
total energy of phase 1 total energy of phase 2
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Entropy inequality and closure laws

@ Define

Eck = 2hipiu? E¢ i = hipiVi(pi) Ep1 = 1p1gh?
kinetic energy of phase k  thermodynamic energy of phase k  gravitational energy of phase 1

with Wi (pi) = 25
k
and

Ey=E.1+E1+Epn Ex=E.>+ E:2
total energy of phase 1 total energy of phase 2

@ Adding all the contributions, the total energy equation writes
0 7] Ohy
a(El +E)+ &(U1E1 + u2Ex + u1hi Py + u2haP2) + f167 = fDy + 3¢5 + fa My,

with f; some given functions depending on the state variable.
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Entropy inequality and closure laws

@ Define

Eck = 2hipiu? E¢ i = hipiVi(pi) Ep1 = 1p1gh?
kinetic energy of phase k  thermodynamic energy of phase k  gravitational energy of phase 1

with W} (py) = %
k
and

Ey=E.1+E1+Epn Ex=E.>+ E:2
total energy of phase 1 total energy of phase 2

@ Adding all the contributions, the total energy equation writes
0 7] Ohy
E(El + E2) + &(UlEl + uzEz 4+ urh1 Py + uzh2P2) + fla—x = fhDy + 31 + f4 My,

with f; some given functions depending on the state variable.

@ Set f; = 0 to get a conservative form :

h
fi=B(P2— PL—prg ") =0= 5= 0and Uj = iz
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Entropy inequality and closure laws

@ Define

Eck = Shipiu? Eik = hipiVi(pk) Ep1 = 2p1gh?
kinetic energy of phase k  thermodynamic energy of phase k  gravitational energy of phase 1
with W} (py) = %
k
and

Ey=E.1+E1+Epn Ex=E.>+ E:2
total energy of phase 1 total energy of phase 2

@ Adding all the contributions, the total energy equation writes
0 7] Ohy
E(El + E2) + &(UlEl + uzEz 4+ urh1 Py + uzh2P2) + fla—x = fhDy + 31 + f4 My,

with f; some given functions depending on the state variable.

@ Set f; = 0 to get a conservative form :

h
fi=B(P2— PL—prg ") =0= 5= 0and Uj = iz

Dy =—f
@ Set ®; = —f3 to get an entropy inequality.
My =—1a
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Entropy inequality and closure laws

@ One obtains :
h
b1 = Ap(P1 — plgfl — P2) = Xp(P1 — P2),

P1+p1g P u3 — u?
72+\U1),(72+\U2)+g)7
P1 P2 2

Dy = (1) \y(u1 — w2).

My = (=1 Am(

where Ap, Am and A, are positive bounded functions which depend on the state variable
(b1, p1, p2, u1, u2).
@ The entropy inequality thus writes :

o 0G
— +—<0
8t+8x_

where the entropy £ and the entropy flux G are defined by
E=E1+Ep1+ Er1+ Ecp+ Et2,
G =u1(Ec1+ Ep1+ Et;1) + u2(Ec2 + Et2) + urhi Py + uaha P2,
with
1 2 he
Eck = EhkPkUp Et k= hipkWi(pk), Ep1 = P&
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Resulting averaged closed system

1D compressible two-layer model for air/water flows

h
p(PL— Plggl — P2) = Xp(Pr — P2),

ohy Ohy
E + UZE =A
Ohip1 | Ohpiun
ot ox
Ohapz | Ohapaua 0
ot Ox ’
Ohiprur | Ohi(prus + P1) _
ot Ox

Oh2pau n Oha(p2u3 + P2)

ot

ox

by

27 Ox
h1,Oha

— (P — Plgi)g
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@ Comments on the closed system
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Consistency with the shallow water equations

@ Pressure relaxation. Consider the following system :

ohy

— = Xp(P; — P;

o = Ao(Pr — P2)

Ohipi
=0.

ot
Easy calculations yield :
P/ — P2.

t—+oo

. . h .
@ Without source terms, using P, = P; — p1g71, mass and momentum conservation
equations for water writes :

Ohip1 " Oh1p1ur

:07
ot Ox
h2
Ohip1ur Oh1p1 u% 3P1g71 oP;
hy— =0.
ot ax T ax Mk

@ Asymptotically, it may be read as a compressible shallow water system with variable
atmospheric pressure Pa(x, t).
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Comments on the closed system

@ Comparison with the two-fluid two-pressure models.

> Same structure as a Baer-Nunziato t Z/pe model obtained with statistical averaging.

> Statistical framework : 3 € {0,1, h1p1if/:zpz}

> Significant mathematical properties.

@ Towards pressurized flows.
Formally, considering hy = H one obtains :

91 Op1n _ 0
ot Ox ’
dp1ur | d(p1u + Pi(p1))
+ =0,
ot ox
as soon as the source terms vanish when h; = H.
@ Sloping pipes
A 7 Constant slope : replace g by g cos6

<

A

in the closure laws.

5y Variable slope : curvilinear formulation ?

b(x) /'z
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© Mathematical properties
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Mathematical properties : hyperbolicity

We study the homogeneous system :

om  om
ot 2 ox
Oh Oh

kpk y Ohepit _ o

ot Ox Ag =ug —c1
Ohyprug | Ohi(piu? + Py) hy | Ohy

—(Py — p1g )k _ g,
o ox (Pr= e ) o

Hyperbolicity

The homogeneous system is hyperbolic under the non-resonant condition :

|up — u2| # ar.
Its eigenvalues are unconditionally real and given by
AL = w2,
A2 = w2 —c2, A3 = up + c,
A4 =u3 —cC1, A\s = u1 +c1.
@ Remarks :

> The eigenstructure can be easily detailed

> In the context of air/water flows, ¢; ~ 1500 m.s~1 and the resonant situation is

clearly out of the scope of interest.
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Mathematical properties : characteristic fields

Nature of characteristic fields and Riemann invariants

The field associated with the 1-wave A\; is linearly degenerate.
The fields associated with the p-waves \,, p = 2,..,5, are genuinely nonlinear.

If I denotes the vector of p-Riemann invariants, one obtains :

Pi+pig% — u2)?
TS Ly Lol
P1 2

@ ©
# = <h1:P17U1:U2+/MdP2>7 P = <h1,P17U1,U2 */Mdm),
P2 P2
C: C:
= <h17P27U2:U1 JF/MdPl)’ P = <h1,/)27U2,U1 */Mdm),
P1 P1

t

= (UZaml(Ul — u2),mur(ur — u2) + h1P1 + ha P>,

Ao =ux — 2 Ap = u2

A3 =up +c2

Ng=ug —c
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Mathematical properties : jump conditions

Jump conditions for genuine non-linear fields

For all genuine non-linear fields corresponding to the p-waves, p = 2, ..., 5, the Rankine-Hugoniot
jump conditions across a single discontinuity of speed o write

[h] =0,
[my(ux — o)] =0,
[mgug(ug — o) + hePy] = 0,

where brackets [.] denote the difference between the states on both sides of the discontinuity.

@ Across the linearly degenerate field :

> h1 may jump.

> The non-conservative products u20xh; and (P1 — plg%)axhl are well defined using
the available 1-Riemann invariants.

@ One can build analytical solutions including rarefaction waves, shock waves and contact
discontinuities.
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Mathematical properties : positivity

Positivity

Let L and T be two positive and real constants. Assume that uy, Oxui and the source terms
belong to L>°([0, L] x [0, T]) for k = 1,2. Then, admissible inlet boundary conditions lead to

he(t,x) € [0, H], V(x,t) € [0,L]x [0, T],
pr(t,x) >0, V(x,t)€[0,L] %[0, T],

when restricting ourselves to regular solutions.

@ C(lassical result considering regular solutions of the equation :

oh ohy
on T o,
ot T ox !
Ohypi Ohypy Ouy
h — = M.
ar TUkTox TPk =Mk
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Conclusion

@ This 1D compressible two-layer model satisfies :

> Physical constraints

* Gas-liquid model
* Several regimes : stratified, pressurized, entrapped air pockets (formally)
* Transition between the regimes (formally)

» Geometric constraints

* Sloping pipes (constant angle only)
* Rectangular channels and circular pipes with variable cross-section

» Mathematical constraints
* Hyperbolicity
* Positivity of hy and pj
* Entropy inequality
* Uniqueness of jump conditions

@ The current work involves :

» Development of a numerical solver
* With large time steps : implicit-explicit schemes to avoid the acoustic CFL

condition
* Robust enough to deal with vanishing phases, h, — 0

> Validation against experimental data
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Thank you for your attention

Contact : charles.demay®@edf.fr

@ Submitted to Continuum Mechanics and Thermodynamics journal :
A compressible two-layer model for transient gas-liquid flows in pipes.
C. Demay, J.-M. Hérard (dec. 2015).
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Circular pipe with variable cross-section

1D compressible two-layer model for air/water flows in pipe with variable cross-section
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