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Industrial context

In nuclear power plants, hydraulic systems are used :

water

Pressurized flow

BUT unwanted air pockets could give rise to transient multi-regime air/water flows :
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Bubbly flow

Requirement : determining the maximum acceptable volume of air in pipes to guarantee
operability of pumps

I Experimental studies : how the pump is affected by the different regimes ?
I Modeling/Numerical studies : how air pockets will be transported until the

pump ?

Same issues in wastewater pipes, petroleum industries...
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Technical specifications
Our goal is to develop a 1D model satisfying the following constraints :

Physical constraints
I Two-phase flow, gas and liquid
I Interactions between both phases
I Several regimes : pressurized, stratified and entrapped air pockets
I Transition from stratified to pressurized flow

Geometric constraints
I Sloping pipes
I Rectangular channels or circular pipes

Mathematical constraints
I Hyperbolicity
I Positivity
I Entropy inequality
I Uniqueness of jump conditions
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Some available models
PFS model by Bourdarias & Gerbi 07’

- Shallow-water equations
- Hydrostatic pressure law
- Incompressible model

Not computed
- Depth averaged isentropic Euler
set of equations

- Barotropic pressure law P(ρ)
- Compressible model

Two-equation system
+ Hyperbolic
+ Transition
− Air phase not computed

Two-layer model by Bourdarias, Ersoy & Gerbi 13’

- Shallow-water equations
- Hydrostatic pressure law
- Incompressible model

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law P(ρ)
- Compressible model

Four-equation system
+ Air phase computed
− Not hyperbolic
− No transition

Two-pressure model by Ransom & Hicks 83’

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law P(ρ)
- Compressible model

- Depth averaged isentropic Euler set of equations
- Barotropic pressure law P(ρ)
- Compressible model

Five-equation system
+ Hyperbolic
+ Air phase computed
− No transition
− No gravity effects
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Proposal

Development of a 1D compressible two-layer model following the Ransom &
Hicks’ approach :

I Isentropic Euler set of equations with a barotropic pressure law P(ρ) for both
phases

I Depth averaging process

Adding physical constraints :
I Hydrostatic constraint for water pressure gradient (gravity effects)
I Transition to the pressurized regime

Investigating mathematical properties :
I Hyperbolicity
I Positivity
I Entropy inequality
I Uniqueness of jump conditions
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Local governing equations

H

h1

h2

water, k = 1

air, k = 2

O x

z

nI

Isentropic Euler set of equations along x :

∂ρk

∂t
+
∂ρkuk

∂x
+
∂ρkwk

∂z
= Mk ,

∂ρkuk

∂t
+
∂ρku

2
k

∂x
+
∂ρkukwk

∂z
+
∂Pk (ρk )

∂x
= Dk ,

with the hydrostatic constraint : ∂P1(ρ1)
∂z

= −ρ1g .

Pressure laws : Isentropic stiffened gas law for water, perfect gas law for air.

Interfacial kinetic boundary condition :

∂h1

∂t
+ UI

∂h1

∂x
= WI , with uI =

(
UI

WI

)
the interfacial velocity.

Continuity of pressure at the interface : P1(x , z = h−1 , t) = P2(x , z = h+
1 , t) = PI .

Continuity of the normal velocity at the interface :

(u1(x , z = h−1 , t)− u2(x , z = h+
1 ), t).nI = 0.

Impermeability on the walls : w1(z = 0) = w2(z = H) = 0.

Closure law for the interfacial velocity :

uI (x , t) = βu1(x , z = h−1 , t) + (1− β)u2(x , z = h+
1 , t), β ∈ [0, 1].
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Averaging process

Averaging operators :

fk (x , t) =
1
hk

∫ hk+zk

zk

fk (x , z, t)dz with
{
z1 = 0,
z2 = h1.

and
̂fk (x , t) =

ρk fk

ρk
Averaged mass conservation equations :

∂hkρk

∂t
+
∂hkρk ûk

∂x
= hkMk .

Averaged momentum conservation equations with the closure law ρku
2
k = ρk ûk

2 :

∂hkρk ûk

∂t
+
∂hk (ρk ûk

2 + Pk (ρk ))

∂x
− PI

∂hk

∂x
= hkDk .

How to satisfy the hydrostatic constraint for water ?

∂P1(ρ1)

∂z
= −ρ1g .
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Hydrostatic constraint
Starting point :

∂P1(ρ1)

∂z
= −ρ1g ⇒ P1(ρ1) = PI (x , t) +

∫ h1

z
ρ1(x , s, t)gds.

An integration between 0 and h1 yields :∫ h1

0
P1(ρ1)dz = h1PI (x , t) + g

∫ h1

0

(∫ h1

z
ρ1(x , s, t)ds

)
dz.

An integration by part of the double integral provides :∫ h1

0
P1(ρ1)dz = h1PI + g

[
z

∫ h1

z
ρ1ds

]h1
0

+ g

∫ h1

0
ρ1zdz,

= h1PI + ρ1zgh1.

With the closure law ρ1z = ρ1 z = ρ1
h1
2 , it comes :

P1 = PI + ρ1g
h1

2
.

The obtained averaged hydrostatic constraint closes PI .
The momentum conservation equation for water under hydrostatic constraint writes :

∂h1ρ1 û1

∂t
+

∂

∂x
h1(ρ1 û1

2 + P1)− (P1 − ρ1g
h1

2
)
∂h1

∂x
= h1D1.
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Resulting averaged system

Omitting the operator notations, the five-equation system corresponding to the five
unknowns (h1, ρ1, ρ2, u1, u2) writes :

∂h1

∂t
+ UI

∂h1

∂x
= Φ1,

∂hkρk

∂t
+
∂hkρkuk

∂x
= Mk ,

∂h1ρ1u1

∂t
+
∂h1(ρ1u2

1 + P1(ρ1))

∂x
−
(
P1(ρ1)− ρ1g

h1

2

)∂h1

∂x
= D1,

∂h2ρ2u2

∂t
+
∂h2(ρ2u2

2 + P2(ρ2))

∂x
−
(
P1(ρ1)− ρ1g

h1

2

)∂h2

∂x
= D2,

with h2 = H − h1.

Closure laws for UI and the source terms ?
I Assumption : UI = βu1 + (1− β)u2, β ∈ [0, 1].

I Entropy inequality.
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Resulting averaged system
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∂h1

∂t
+ UI

∂h1

∂x
= Φ1,

∂hkρk

∂t
+
∂hkρkuk

∂x
= Mk ,

∂h1ρ1u1

∂t
+
∂h1(ρ1u2

1 + P1(ρ1))

∂x
−
(
P1(ρ1)− ρ1g

h1

2

)∂h1

∂x
= D1,
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Entropy inequality and closure laws

Define
Ec,k = 1

2hkρku
2
k Et,k = hkρkΨk (ρk ) Ep,1 = 1

2ρ1gh2
1

kinetic energy of phase k thermodynamic energy of phase k gravitational energy of phase 1

with Ψ
′
k (ρk ) =

Pk (ρk )

ρ2
k

and
E1 = Ec,1 + Et,1 + Ep,1 E2 = Ec,2 + Et,2
total energy of phase 1 total energy of phase 2

Adding all the contributions, the total energy equation writes

∂

∂t
(E1 + E2) +

∂

∂x
(u1E1 + u2E2 + u1h1P1 + u2h2P2) + f1

∂h1

∂x
= f2D1 + f3Φ1 + f4M1,

with fi some given functions depending on the state variable.

Set f1 = 0 to get a conservative form :

f1 = β(P2 − P1 − ρ1g
h1

2
) = 0⇒ β = 0 and UI = u2

Set
D1 = −f2
Φ1 = −f3
M1 = −f4

to get an entropy inequality.
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Entropy inequality and closure laws

One obtains :

Φ1 = λp(P1 − ρ1g
h1

2
− P2) = λp(PI − P2),

Mk = (−1)kλm
(

(
P1 + ρ1g

h1
2

ρ1
+ Ψ1)− (

P2

ρ2
+ Ψ2) +

u2
2 − u2

1
2

)
,

Dk = (−1)kλu(u1 − u2).

where λp , λm and λu are positive bounded functions which depend on the state variable
(h1, ρ1, ρ2, u1, u2).

The entropy inequality thus writes :

∂E
∂t

+
∂G
∂x
≤ 0

where the entropy E and the entropy flux G are defined by

E = Ec,1 + Ep,1 + Et,1 + Ec,2 + Et,2,

G = u1(Ec,1 + Ep,1 + Et,1) + u2(Ec,2 + Et,2) + u1h1P1 + u2h2P2,

with

Ec,k =
1
2
hkρku

2
k , Et,k = hkρkΨk (ρk ), Ep,1 = ρ1g

h2
1
2
.
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Resulting averaged closed system

1D compressible two-layer model for air/water flows

∂h1

∂t
+ u2

∂h1

∂x
= λp(P1 − ρ1g

h1

2
− P2) = λp(PI − P2),

∂h1ρ1

∂t
+
∂h1ρ1u1

∂x
= 0,

∂h2ρ2

∂t
+
∂h2ρ2u2

∂x
= 0,

∂h1ρ1u1

∂t
+
∂h1(ρ1u

2
1 + P1)

∂x
− (P1 − ρ1g

h1

2
)
∂h1

∂x
= λu(u2 − u1),

∂h2ρ2u2

∂t
+
∂h2(ρ2u

2
2 + P2)

∂x
− (P1 − ρ1g

h1

2
)
∂h2

∂x
= λu(u1 − u2).
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Consistency with the shallow water equations

Pressure relaxation. Consider the following system :

∂h1

∂t
= λp(PI − P2)

∂hkρk

∂t
= 0.

Easy calculations yield :
PI −→

t→+∞
P2.

Without source terms, using PI = P1 − ρ1g
h1
2 , mass and momentum conservation

equations for water writes :

∂h1ρ1

∂t
+
∂h1ρ1u1

∂x
= 0,

∂h1ρ1u1

∂t
+
∂h1ρ1u2

1
∂x

+
∂ρ1g

h21
2

∂x
+ h1

∂PI

∂x
= 0.

Asymptotically, it may be read as a compressible shallow water system with variable
atmospheric pressure P2(x , t).
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Comments on the closed system

Comparison with the two-fluid two-pressure models.
I Same structure as a Baer-Nunziato type model obtained with statistical averaging.
I Statistical framework : β ∈ {0, 1, h1ρ1

h1ρ1+h2ρ2
}.

I Significant mathematical properties.

Towards pressurized flows.
Formally, considering h1 = H one obtains :

∂ρ1

∂t
+
∂ρ1u1

∂x
= 0,

∂ρ1u1

∂t
+
∂(ρ1u2

1 + P1(ρ1))

∂x
= 0,

as soon as the source terms vanish when h1 = H.

Sloping pipes

θb(x)

H

h1

h2

water

air

y x

z
Constant slope : replace g by g cos θ
in the closure laws.

Variable slope : curvilinear formulation ?
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Mathematical properties : hyperbolicity
We study the homogeneous system :

∂h1

∂t
+ u2

∂h1

∂x
= 0,

∂hkρk

∂t
+
∂hkρkuk

∂x
= 0,

∂hkρkuk

∂t
+
∂hk (ρku

2
k + Pk )

∂x
− (P1 − ρ1g

h1

2
)
∂hk

∂x
= 0.

λ4 = u1 − c1

λ2 = u2 − c2
λ1 = u2

λ3 = u2 + c2

λ5 = u1 + c1

x

t

Hyperbolicity

The homogeneous system is hyperbolic under the non-resonant condition :

|u1 − u2| 6= c1.

Its eigenvalues are unconditionally real and given by

λ1 = u2,

λ2 = u2 − c2, λ3 = u2 + c2,

λ4 = u1 − c1, λ5 = u1 + c1.

Remarks :
I The eigenstructure can be easily detailed
I In the context of air/water flows, c1 ≈ 1500 m.s−1 and the resonant situation is

clearly out of the scope of interest.
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Mathematical properties : characteristic fields

Nature of characteristic fields and Riemann invariants

The field associated with the 1-wave λ1 is linearly degenerate.

The fields associated with the p-waves λp , p = 2, .., 5, are genuinely nonlinear.

If IP denotes the vector of p-Riemann invariants, one obtains :

I 1 =
(
u2,m1(u1 − u2),m1u1(u1 − u2) + h1P1 + h2P2,

P1 + ρ1g
h1
2

ρ1
+ Ψ1 +

(u1 − u2)2

2

)
,

I 2 =
(
h1, ρ1, u1, u2 +

∫
c2(ρ2)

ρ2
dρ2

)
, I 3 =

(
h1, ρ1, u1, u2 −

∫
c2(ρ2)

ρ2
dρ2

)
,

I 4 =
(
h1, ρ2, u2, u1 +

∫
c1(ρ1)

ρ1
dρ1

)
, I 5 =

(
h1, ρ2, u2, u1 −

∫
c1(ρ1)

ρ1
dρ1

)
,

λ4 = u1 − c1

λ2 = u2 − c2
λ1 = u2

λ3 = u2 + c2

λ5 = u1 + c1

x

t
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Mathematical properties : jump conditions

Jump conditions for genuine non-linear fields

For all genuine non-linear fields corresponding to the p-waves, p = 2, ..., 5, the Rankine-Hugoniot
jump conditions across a single discontinuity of speed σ write

[hk ] = 0,

[mk (uk − σ)] = 0,

[mkuk (uk − σ) + hkPk ] = 0,

where brackets [.] denote the difference between the states on both sides of the discontinuity.

Across the linearly degenerate field :
I h1 may jump.

I The non-conservative products u2∂xh1 and (P1 − ρ1g
h1
2 )∂xh1 are well defined using

the available 1-Riemann invariants.

One can build analytical solutions including rarefaction waves, shock waves and contact
discontinuities.
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Mathematical properties : positivity

Positivity

Let L and T be two positive and real constants. Assume that uk , ∂xuk and the source terms
belong to L∞([0, L]× [0,T ]) for k = 1, 2. Then, admissible inlet boundary conditions lead to

hk (t, x) ∈ [0,H], ∀(x , t) ∈ [0, L]× [0,T ],

ρk (t, x) ≥ 0, ∀(x , t) ∈ [0, L]× [0,T ],

when restricting ourselves to regular solutions.

Classical result considering regular solutions of the equation :

∂h1

∂t
+ u2

∂h1

∂x
= Φ1,

∂hkρk

∂t
+ uk

∂hkρk

∂x
+ hkρk

∂uk

∂x
= Mk .
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Conclusion

This 1D compressible two-layer model satisfies :
I Physical constraints

F Gas-liquid model
F Several regimes : stratified, pressurized, entrapped air pockets (formally)
F Transition between the regimes (formally)

I Geometric constraints
F Sloping pipes (constant angle only)
F Rectangular channels and circular pipes with variable cross-section

I Mathematical constraints
F Hyperbolicity
F Positivity of hk and ρk
F Entropy inequality
F Uniqueness of jump conditions

The current work involves :
I Development of a numerical solver

F With large time steps : implicit-explicit schemes to avoid the acoustic CFL
condition

F Robust enough to deal with vanishing phases, hk → 0
I Validation against experimental data
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Thank you for your attention

Contact : charles.demay@edf.fr

Submitted to Continuum Mechanics and Thermodynamics journal :
A compressible two-layer model for transient gas-liquid flows in pipes.
C. Demay, J.-M. Hérard (dec. 2015).
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Circular pipe with variable cross-section

σ(x, z, t) h1

h2

η1

z

yx
•

R(x, t)

ez

er water

airz

xy nI

C

1D compressible two-layer model for air/water flows in pipe with variable cross-section

∂A1

∂t
+ u2

∂A1

∂x
= λp(P1 − ρ1g`1 − P2) +

θk

2π
(
∂S

∂t
+ u2

∂S

∂x
),

∂Akρk

∂t
+
∂Akρkuk

∂x
= 0,

∂A1ρ1u1

∂t
+
∂A1(ρ1u2

1 + P1)

∂x
− (P1 − ρ1g`1)

∂A1

∂x
= λu(u2 − u1) + ρ1g`1

θ1

2π
∂S

∂x
,

∂A2ρ2u2

∂t
+
∂A2(ρ2u2

2 + P2)

∂x
− (P1 − ρ1g`1)

∂A2

∂x
= λu(u1 − u2) + (P2 − (P1 − ρ1g`1))

θ2

2π
∂S

∂x
.
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