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Jackson’s model

The two mass conservation equations for the solid and fluid phases are, respectively,

∂t(ρsϕ) +∇ · (ρsϕv) = 0,

∂t(ρf (1− ϕ)) +∇ · (ρf (1− ϕ)u) = 0,

and equations of momentum conservation for each phase are

ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts + f0 + ρsϕ g,
ρf (1− ϕ)(∂tu + (u · ∇)u) = −∇ · Tfm − f0 + ρf (1− ϕ)g.

The velocities are: v for the solid phase, u for the fluid phase,

The (symmetric) stress tensors are: Ts for the solid, Tfm for the fluid.

The constant densities are denoted by: ρs for the solid, ρf for the fluid.

The force f0 is decomposed into the sum of the buoyancy force and all
remaining contributions f :

f0 = −ϕ∇pfm + f .

The solid volume fraction is ϕ.
Closure:

∇ · v = Φ.



Jackson’s model Boundary conditions Asymptotic analysis Pressure The two-phase two-layer model Energy balance Tests

Domain

b

hf

hm

Figure: Domain and geometrical parameters.

The solid-fluid mixture lies between a fixed bottom and an upper pure fluid
layer.
hm is the height of the mixture layer.
hf is the height of the pure fluid layer over the mixture.
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Boundary conditions:

At the bottom:
Non penetration condition:

u · n = 0, v · n = 0

where n is the upward space unit normal (i.e. the normal to the topography).

Coulomb friction law:

(Tsn)τ = − tan δeff sgn (v)(Tsn) · n,

where δeff is the effective intergranular Coulomb friction angle.

Navier friction condition for the fluid phase:

(Tfm n)τ = −kbu,

for some coefficient kb ≥ 0.
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Boundary conditions:

At the free surface:

No tension for the fluid
Tf NX = 0.

A kinematic condition:
Nt + uf · NX = 0.

where N = (Nt,NX) is a time-space normal to the free surface.
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Boundary conditions:

At the interface:
A kinematic condition for the solid phase,

Ñt + v · ÑX = 0.

where we denote by Ñ = (Ñt, ÑX) a time-space upward normal to the interface.

A Navier fluid friction condition“Tfm + Tf

2
ÑX

”
τ

= −ki(uf − u)τ .

where ki ≥ 0 is a friction coefficient.

Additional jump relations have to be prescribed. These relations state that the
fluxes on both sides of the interface are related through transfer conditions. These
are determined by global conservation properties, under the form of
Rankine-Hugoniot conditions.
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Jump conditions at the interface

We must first ensure that the total fluid mass is conserved:

Ñt + uf · ÑX = (1− ϕ∗)(Ñt + u · ÑX) ≡ Vf ,

where:
ϕ∗ is the value of the solid volume fraction at the interface.

The term Vf defines the fluid mass that is transferred from the mixture to the
fluid-only layer (Vf < 0 means that the fluid is transferred from the fluid-only
region to the mixture region).
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Jump conditions at the interface

Conservation of the total momentum gives

ρfVf (u− uf ) + (Ts + Tfm )ÑX = Tf ÑX.

The energy balance through the interface yields the stress transfer condition:

TsÑX =

 
ρf

2

„
(u− uf ) ·

ÑX

|ÑX|

«2

+

„
(Tfm ÑX) · ÑX

|ÑX|2
− pfm

«
ϕ∗

1− ϕ∗

!
ÑX.
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Asymptotic hypothesis

If ε = H/L, where: H and L are the characteristic width and length of the domain,
respectively,

hm ∼ ε, hf ∼ ε, ∇xb = O(ε), Ts = O(ε), Tfm = O(ε), Tf = O(ε),
vx = O(1), ux = O(1), ux

f = O(1), ϕ = O(1), Φ = O(1),
kb = O(ε), ki = O(ε).

Taking L as typical length unit, τ =
p

L/g as typical time unit,

Then, all the natural units can be expressed in terms of L, τ , and ρs (or ρf ).

We assume that:
The unknowns vary at the scales L in the downslope direction,
εL in the normal direction,
and τ in time,

which means formally that

∇x = O(1), ∂z = O(ε−1), ∂t = O(1).
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Asymptotic hypothesis

∂thf +∇x ·
Z b+hm+hf

b+hm

ux
f dz = Vf .

Then,
Vf = O(ε).

hm ∼ ε, hf ∼ ε, ∇xb = O(ε), Ts = O(ε), Tfm = O(ε), Tf = O(ε),
vx = O(1), ux = O(1), ux

f = O(1), ϕ = O(1), Φ = O(1), kb = O(ε), ki = O(ε).
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Asymptotic hypothesis

As in (Bouchut et al. 2003; Bouchut and Westdickenberg 2004) we shall assume that
the tangential velocities and the solid volume fraction do not depend on z up to errors
in O(ε2),

vx = vx(t, x) + O(ε2), (3)

ux = ux(t, x) + O(ε2), (4)

ux
f = ux

f (t, x) + O(ε2), (5)

ϕ = ϕ̄(t, x) + O(ε2). (6)

Then, from
∇x · vx + ∂zvz = Φ.

and the non-penetration condition (vx · ∇xb = vz at z = b), we get that vz = O(ε).

Similarly, from fluid mass phase conservation,

∂t(1− ϕ) +∇x ·
`
(1− ϕ)ux´+ ∂z

`
(1− ϕ)uz´ = 0,

and the non-penetration condition we get (1− ϕ)uz = O(ε), thus uz = O(ε).
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Asymptotic hypothesis

We assume also for the closure function an expansion as

Φ = Φ̄(t, x) + O(ε2),

with
Φ̄ = K ¯̇γ(ϕ̄− ϕ̄eq

c ).

Remark: We adopt this approximation in order to make the derivation possible, even
if it looks not appropriate because of the dependency on the pressure of ϕeq

c , and of
the nonlinear coupling of γ̇.
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Asymptotic hypothesis

The stress tensors Tk (k = s, fm, f ), they are decomposed as

Tk = pk Id +eTk, (7)

and suitable rheological assumptions should be made to define eTk.

Since we aim to represent only depth-average effects, we prefer to simplify the
rheologies and replace the effect of the stress tensors inside the domain by
boundary layers due to the friction conditions.

Thus we shall assume that the stresses eTk are O(ε2) far from the boundaries
z = b, b + hm and can just be nonzero close to these boundaries.

We assume thateTxz
s , eTxz

fm ,
eTxz

f can be O(ε) close to the boundaries z = b, b + hm,

but are O(ε2) far from these boundaries,

while the other components satisfy

eTxx
k = eTzz

k = O(ε2) everywhere.



Jackson’s model Boundary conditions Asymptotic analysis Pressure The two-phase two-layer model Energy balance Tests

Asymptotic hypothesis

The drag term is defined by
f = β̃(u− v),

β̃ being the drag coefficient given by

β̃ = (1− ϕ)2 ηf

κ
,

where ηf is the dynamic viscosity of the fluid and κ is the hydraulic permeability of
the granular aggregate, that depends on ϕ.

We have
β̃ = β̄(t, x)

`
1 + O(ε2)

´
,

with
β̄ = (1− ϕ̄)2 ηf

κ̄
.

We shall consider two possible sets of assumptions.
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Asymptotic hypothesis: drag term

(i) The drag term is quite strong, that is

β̄ ∼ ε−1.

Then since the drag force β̃(u− v) has to balance gravity terms, it necessarily
remains bounded. This implies that

ux − vx = O(ε).

(ii) The drag term is moderate, that is

β̄ = O(1).

In this case one has just ux − vx = O(1).

Note that in both cases one has β̄(ux − vx) = O(1)
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Interface pressure

The fluid pressure in the fluid-only layer

pf = ρf g cos θ(b + hm + hf − z) + O(ε2) for b + hm < z < b + hm + hf

At the interface we have

pfm |b+hm
= pf |b+hm

− ps|b+hm
+ O(ε2).

Moreover, the jump conditions for the energy balance through the interface
yields the stress transfer condition:

TsÑX =

 
ρf

2

„
(u− uf ) ·

ÑX

|ÑX|

«2

+

„
(Tfm ÑX) · ÑX

|ÑX|2
− pfm

«
ϕ∗

1− ϕ∗

!
ÑX.

We look now for a boundary condition of the form

TsÑX = p∗s ÑX, (p∗s = ps|b+hm
+ O(ε2))

Then,

p∗s =

 
ρf
2

„
(u− uf ) · ÑX

|ÑX |

«2

+

„
(Tfm ÑX) · ÑX

|ÑX |2
− pfm

«
ϕ∗

1−ϕ∗

!
.
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Interface pressure

That is,

p∗s =
ρf

2
1

1 + |∇x(b + hm)|2
“

uz − uz
f − (ux − ux

f ) · ∇x(b + hm)
”2

+
ϕ∗

1− ϕ∗
“ (Tf

xx
m∇x(b + hm)) · ∇x(b + hm)− 2Tf

xz
m · ∇x(b + hm) + Tf

zz
m

1 + |∇x(b + hm)|2 − pfm

”
.

Thus

p∗s = O(ε2), ps|b+hm
= O(ε2), pfm |b+hm

= pf |b+hm
+ O(ε2).

Then we obtain the pressure for the fluid in the mixture at the interface,

pfm |b+hm
= ρf g cos θhf + O(ε2).

ps|b+hm
= O(ε2)
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Excess pore pressure

In the mixture, the normal fluid momentum equation gives

∂zpfm = −ρf g cos θ − β̄

1− ϕ̄ (uz − vz) + O(ε).

Integrating with respect to z, we obtain for b < z < b + hm

pfm = pfm |b+hm
+ ρf g cos θ(b + hm − z) +

β̄

1− ϕ̄

Z b+hm

z
(uz − vz)(z′)dz′ + O(ε2),

Then,

pfm = ρf g cos θ(b + hm + hf − z) + pe
fm + O(ε2) for b < z < b + hm,

where

pe
fm ≡

β̄

1− ϕ̄

Z b+hm

z
(uz − vz)(z′)dz′

is the excess pore pressure.
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Solid pressure

Moreover, the solid normal momentum equation gives

∂zps = −ϕ̄∂zpfm − ϕ̄ρsg cos θ + β̄(uz − vz) + O(ε).

Integrating with respect to z gives the expression of the solid pressure,

ps = ps|b+hm
−ϕ̄(pfm−pfm |b+hm

)+ϕ̄ρsg cos θ(b+hm−z)−β̄
Z b+hm

z
(uz−vz)(z′)dz′+O(ε2).

The solid pressure is given by

ps = ϕ̄(ρs − ρf )g cos θ(b + hm − z)− pe
fm + O(ε2) for b < z < b + hm.

Note that its nonhydrostatic component is the opposite of that of pfm
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Evaluation of the excess pore pressure

pe
fm ≡

β̄

1− ϕ̄

Z b+hm

z
(uz − vz)(z′)dz′

We have thus to evaluate uz − vz up to O(ε2) errors.
The closure equation gives:

∇x · vx + ∂zvz = Φ.

By using the non-penetration condition we get

vz = vx · ∇xb + (z− b)(Φ̄−∇x · vx) + O(ε3).

Next, adding the mass equations in the mixture, we find

∇x · (ϕvx + (1− ϕ)ux) + ∂z(ϕvz + (1− ϕ)uz) = 0,

and using the non-penetration conditions we get

ϕvz+(1−ϕ)uz = (ϕ̄vx+(1−ϕ̄)ux)·∇xb−(z−b)∇x ·(ϕ̄vx+(1−ϕ̄)ux)+O(ε3).

By subtracting previous equations yields

uz − vz = (ux − vx) · ∇xb− z− b
1− ϕ̄

“
Φ̄ +∇x ·

`
(1− ϕ̄)(ux − vx)

´”
+ O(ε3).
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Evaluation of the excess pore pressure

pe
fm ≡

β̄

1− ϕ̄

Z b+hm

z
(uz − vz)(z′)dz′

uz − vz = (ux − vx) · ∇xb− z− b
1− ϕ̄

“
Φ̄ +∇x ·

`
(1− ϕ̄)(ux − vx)

´”
+ O(ε3).

Then,

pe
fm =

β̄

1− ϕ̄

„
(b + hm − z)(ux − vx) · ∇xb

−1
2

h2
m − (z− b)2

1− ϕ̄

“
Φ̄ +∇x ·

`
(1− ϕ̄)(ux − vx)

´”
+ O(ε4)

«
.
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Evaluation of the excess pore pressure

We can then consider two possible sets of expansions for the values of (pe
fm )|b, pe

fm :

(i) (β̄ = O(ε−1)) The values of (pe
fm )|b, pe

fm are given simply by

(pe
fm )|b = − β̄

(1− ϕ̄)2

h2
m

2
Φ̄ + O(ε2), pe

fm = − β̄

(1− ϕ̄)2

h2
m

3
Φ̄ + O(ε2).

(ii) (β̄ = O(1)) The values of (pe
fm )|b, pe

fm are given by

(pe
fm )|b =

β̄

1− ϕ̄

„
hm(ux−vx)·∇xb− h2

m

2(1− ϕ̄)

“
Φ̄+∇x·

`
(1−ϕ̄)(ux−vx)

´”«
+O(ε3),

pe
fm =

β̄

1− ϕ̄

„
hm

2
(ux−vx)·∇xb− h2

m

3(1− ϕ̄)

“
Φ̄+∇x·

`
(1−ϕ̄)(ux−vx)

´”«
+O(ε3).
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The two-phase two-layer model

From the mass conservation equations we obtain:

∂t(ϕ̄hm) +∇x · (ϕ̄hmvx) = 0,

∂t
`
(1− ϕ̄)hm

´
+∇x ·

`
(1− ϕ̄)hmux

´
= −Vf ,

∂thf +∇x · (hf ux
f ) = Vf .

Moreover, the evolution equation for ϕ̄ is

∂tϕ̄+ vx · ∇xϕ̄ = −ϕ̄Φ̄.

By combining it with previous equations we obtain

Vf = −hmΦ̄−∇x ·
`
(1− ϕ̄)hm(ux − vx)

´
.
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The two-phase tow-layer model

∂thf +∇x · (hf ux
f ) = Vf ,

ρf (∂tux
f + ux

f · ∇xux
f ) = −ρf g cos θ∇x(b + hm + hf )

= − 1
hf

`1
2
ρfVf + ki

´
(ux

f − ux)− ρf g sinθ(1, 0)t,

∂tϕ̄+ vx · ∇xϕ̄ = −ϕ̄Φ̄,
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The two-phase tow-layer model

∂t(ϕ̄hm) +∇x · (ϕ̄hmvx) = 0,

ρsϕ̄(∂tvx + vx · ∇xvx) = −ϕ̄g cos θ
`
ρs∇x(b + hm) + ρf∇xhf

´
−(ρs − ρf )g cos θ

hm

2
∇xϕ̄+ (1− ϕ̄)∇xpe

fm

−sgn (vx) tan δeff

`
ϕ̄(ρs − ρf )g cos θhm − (pe

fm )|b
´

+

hm

+β̄(ux − vx)− ϕ̄ρsg sinθ(1, 0)t,

∂t
`
(1− ϕ̄)hm

´
+∇x ·

`
(1− ϕ̄)hmux

´
= −Vf ,

ρf (1− ϕ̄)
`
∂tux + ux · ∇xux

´
= −(1− ϕ̄)ρf g cos θ∇x(b + hm + hf )

−(1− ϕ̄)∇xpe
fm

− 1
hm

“`1
2
ρfVf − ki

´
(ux

f − ux) + kbux
”

−β̄(ux − vx)− (1− ϕ̄)ρf g sinθ(1, 0)t,
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The two-phase tow-layer model

Where:

∇xpe
fm =

1
hm

“
∇x(hmpe

fm ) + (pe
fm )|b∇xb

”
,

and

Case (I) (β̄ = O(ε−1)):

(pe
fm )|b = − β̄

(1− ϕ̄)2

h2
m

2
Φ̄, pe

fm = − β̄

(1− ϕ̄)2

h2
m

3
Φ̄

Case (II) (β̄ = O(1)):

(pe
fm )|b = − β̄

1− ϕ̄

„
h2

m

2
Φ̄ +∇x ·

`
(1− ϕ̄)(ux − vx)

´
1− ϕ̄ − hm(ux − vx) · ∇xb

«
,

pe
fm = − β̄

1− ϕ̄

„
h2

m

3
Φ̄ +∇x ·

`
(1− ϕ̄)(ux − vx)

´
1− ϕ̄ − hm

2
(ux − vx) · ∇xb

«
.
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Parameter settings

Friction coefficient:

β̄ = (1− ϕ̄)2 ηf

κ̄
, κ̄ =

d2(1− ϕ̄)3

150ϕ̄2 .

Effective bottom solid friction:

tan δeff = tan δ + K(ϕ̄− ϕ̄eq
c ).

Dilatance closure:

Φ̄ = K ¯̇γ(ϕ̄− ϕ̄eq
c ).

Critical-state compacity ϕ̄eq
c :

ϕ̄eq
c = ϕ̄stat

c − K2
ηf ¯̇γ

ps|b
,

Solid pressure:

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm )|b, (pe

fm )|b = − β̄

(1− ϕ̄)2

h2
m

2
Φ̄,
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The energy balance associated to Jackson’s system

∂t
„
ρsϕ
|v|2

2
+ ρf (1− ϕ)

|u|2

2
− (g · X)

`
ρsϕ+ ρf (1− ϕ)

´«
+∇ ·

„
ρsϕ
|v|2

2
v + ρf (1− ϕ)

|u|2

2
u− (g · X)

`
ρsϕv + ρf (1− ϕ)u

´
+pfm

`
ϕv + (1− ϕ)u

´
+ fTfm u + Tsv

«
= Ts : ∇v + fTfm : ∇u + f · (v− u),

where X denotes the space position.

The friction effects give naturally a dissipative term f · (v− u) ≤ 0,

it is also natural to assume that fTfm : ∇u ≤ 0.

Moreover:
Ts : ∇v = ps∇ · v + eTs : ∇v,

It is also natural to have eTs : ∇v ≤ 0,
it remains the term ps∇ · v.

Closure:
∇ · v = Φ
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The energy balance associated to Jackson’s system

The right hand side of the 3D energy balance is written as

Rs = psΦ + eTs : ∇v + eTfm : ∇u + f · (v− u)

where
Φ = Kγ̇(ϕ− ϕeq

c ).
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The energy balance associated to Jackson’s system

Rs = psKγ̇(ϕ− ϕeq
c ) + eTs : ∇v + eTfm : ∇u + f · (v− u)

If ϕ < ϕc then the granular medium contracts (∇ · v < 0) as soon as there is a
deformation (γ̇ > 0). Consequently,

water must be expelled from the mixture,
the pore pressure increases.
Friction decreases.

then psΦ = psKγ̇(ϕ− ϕeq
c ) ≤ 0 (at least if ps remains positive), and Rs is

clearly nonpositive.
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The energy balance associated to Jackson’s system

Rs = psKγ̇(ϕ− ϕeq
c ) + eTs : ∇v + eTfm : ∇u + f · (v− u)

If ϕ > ϕeq
c then the granular medium dilates (∇ · v > 0) as soon as there is a

deformation (γ̇ > 0). Consequently,
water must be sucked by the mixture,
the pore pressure decreases.
Friction increases.

then psΦ ≥ 0. Thus, in this case, the friction forces need to be strong enough to
balance the energy of the system. Namely, the internal friction between solid
particles must generate a dissipation eTs : ∇v sufficiently negative such that,
together with the friction in the mixture f · (v− u), counterbalance the previous
term psΦ.
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The energy balance associated to Jackson’s system

Rs = psKγ̇(ϕ− ϕeq
c ) + eTs : ∇v + eTfm : ∇u + f · (v− u)

Interpretation as a compressible model
We propose an interpretation of the dilatancy relation as a compressible model,
that enables to write down a fully dissipative energy equation in the case when
the critical-state compacity ϕeq

c depends only on the pressure ps, and not on γ̇.
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The energy balance associated to Jackson’s system

Rs = psKγ̇(ϕ− ϕeq
c ) + eTs : ∇v + eTfm : ∇u + f · (v− u)

Interpretation as a compressible model
We consider the critical volume fraction ϕeq

c to be an increasing function of the
solid pressure only, ϕeq

c = ϕeq
c (ps), bounded by some maximal value ϕmax.

This function ϕ = ϕeq
c (ps) can be defined by its inverse p = peq

c (ϕ)
(peq

c (ϕ) being called the critical pressure).
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Interpretation as a compressible model

ϕeq
c = ϕeq

c (ps), (p = peq
c (ϕ))

The energy equation gives

∂t
„
ρsϕ
|v|2

2
+ ρf (1− ϕ)

|u|2

2
− (g · X)

`
ρsϕ+ ρf (1− ϕ)

´
+ ρsϕeeq

c

«
+∇ ·

„
ρsϕ
|v|2

2
v + ρf (1− ϕ)

|u|2

2
u− (g · X)

`
ρsϕv + ρf (1− ϕ)u

´
+pfm

`
ϕv + (1− ϕ)u

´
+ fTfm u + Tsv + ρsϕeeq

c v
«

= (ps − peq
c )Kγ̇(ϕ− ϕeq

c ) + eTs : ∇v + fTfm : ∇u + f · (v− u).

Since ps − peq
c (ϕ) and ϕ− ϕeq

c (ps) have opposite signs – because ϕeq
c is an increasing

function of ps– one has (ps − peq
c )∇ · v ≤ 0, and the energy balance equation (31) has

a nonpositive right-hand side.
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Interpretation as a compressible model

ϕeq
c = ϕeq

c (ps), (p = peq
c (ϕ))

The energy equation gives

∂t
„
ρsϕ
|v|2

2
+ ρf (1− ϕ)

|u|2

2
− (g · X)

`
ρsϕ+ ρf (1− ϕ)

´
+ ρsϕeeq

c

«
+∇ ·

„
ρsϕ
|v|2

2
v + ρf (1− ϕ)

|u|2

2
u− (g · X)

`
ρsϕv + ρf (1− ϕ)u

´
+pfm

`
ϕv + (1− ϕ)u

´
+ fTfm u + Tsv + ρsϕeeq

c v
«

= (ps − peq
c )Kγ̇(ϕ− ϕeq

c ) + eTs : ∇v + fTfm : ∇u + f · (v− u).

Remark: Classically in thermodynamics, the mechanical internal energy U is related
to the pressure p and volume V by the relation dU = −pdV . Here the specific
volume (i.e. volume per mass unit) is 1/(ρsϕ), thus to the critical pressure peq

c (ϕ)
one can associate by this relation a specific internal energy (i.e. internal energy per
mass unit) eeq

c (ϕ). Since d(1/ϕ) = −dϕ/ϕ2 we obtain the differential relation

deeq
c

dϕ
=

peq
c

ρsϕ2 .



Jackson’s model Boundary conditions Asymptotic analysis Pressure The two-phase two-layer model Energy balance Tests

Energy balance for the proposed model

Then one has the following local energy balance identity,

∂t

 
ρsϕ̄hm

|vx|2
2 + ρf (1− ϕ̄)hm

|ux|2
2 + ρf hf

|ux
f |

2

2 + ρshmϕ̄eeq
c (ϕ̄)

+g cos θ
“
ρsϕ̄hm + ρf

`
(1− ϕ̄)hm + hf

´”
(b + b̃)

+(ρs − ρf )g cos θϕ̄ h2
m
2 + ρf g cos θ (hm+hf )

2

2

!

+∇x ·

 
ρsϕ̄hm

|vx|2
2 vx + ρf (1− ϕ̄)hm

|ux|2
2 ux + ρf hf

|ux
f |

2

2 ux
f + ρshmϕ̄eeq

c (ϕ̄)vx

+g cos θ
“
ρsϕ̄hmvx + ρf

`
(1− ϕ̄)hmux + hf ux

f

´”
(b + b̃ + hm)

+ρf g cos θ
“
ϕ̄hmvx + (1− ϕ̄)hmux + hf ux

f

”
hf + (1− ϕ̄)hmpe

fm (ux − vx)

!
= R,
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Energy balance for the proposed model

R = (ps − peq
c ) Kγ̇(ϕ− ϕeq

c )| {z }
Φ

+eTs : ∇v + fTfm : ∇u + f · (v− u).

Where

R =
`
ps − peq

c (ϕ̄)
´
hmΦ̄ + hmpe

fm Φ̄ + Re − β̄hm|ux − vx|2

− |vx| tan δeff
`
ϕ̄(ρs − ρf )g cos θhm − (pe

fm )|b
´

+
− ki|ux

f − ux|2 − kb|ux|2,
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Energy balance for the proposed model

R = (ps − peq
c ) Kγ̇(ϕ− ϕeq

c )| {z }
Φ

+eTs : ∇v + fTfm : ∇u + f · (v− u).

Where

R =
`
ps − peq

c (ϕ̄)
´
hmΦ̄ + hmpe

fm Φ̄ + Re − β̄hm|ux − vx|2

− |vx| tan δeff
`
ϕ̄(ρs − ρf )g cos θhm − (pe

fm )|b
´

+
− ki|ux

f − ux|2 − kb|ux|2,

with

Re = hmpe
fm∇x ·

“
(1− ϕ̄)(ux − vx)

”
− (1− ϕ̄)(pe

fm )|b(ux − vx) · ∇xb,
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Energy balance for the proposed model

R = (ps − peq
c ) Kγ̇(ϕ− ϕeq

c )| {z }
Φ

+eTs : ∇v + fTfm : ∇u + f · (v− u).

Where

R =
`
ps − peq

c (ϕ̄)
´
hmΦ̄ + hmpe

fm Φ̄ + Re − β̄hm|ux − vx|2

− |vx| tan δeff
`
ϕ̄(ρs − ρf )g cos θhm − (pe

fm )|b
´

+
− ki|ux

f − ux|2 − kb|ux|2,

But:

hmpe
fm Φ̄ + Re = −β̄

Z b+hm

b
(uz − vz)2dz in case (II),

while further error in O(ε3) need to be added in case (I).
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The immersed configuration

To simulate underwater granular flows, we take the upper pure fluid layer at rest
ux

f = 0 in our three-velocity model and

hm(t) + hf (t, x) + x tan θ = cst,

The equations are then :

∂t(ϕ̄hm) + ... = 0, ∂tϕ̄+ .... = −ϕ̄Φ̄, (10)

ρsϕ̄∂tvx + .... = −sgn (vx)
τb

hm
+ β̄(ux − vx)− ϕ̄(ρs − ρf )g sinθ, (11)

ρf (1− ϕ̄)∂tux + ... =
“1

2
ρfVf − kb

” ux

hm
− β̄(ux − vx), (12)

with
Vf = −hmΦ̄, τb = tan δeff ps|b + K1ηf ¯̇γ, (13)

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm )|b, (pe

fm )|b = − β̄

(1− ϕ̄)2

h2
m

2
Φ̄, (14)



Jackson’s model Boundary conditions Asymptotic analysis Pressure The two-phase two-layer model Energy balance Tests

Inmersed non-uniform test

(a) Initial condition

The initial conditions are

ux(t = 0) = 0 m/s, vx(t = 0) = 0 m/s, ϕ̄(t = 0) = ϕ̄0, hm(t = 0) = h0
m.
(15)

ρs = 2500 kg/m3, ϕ̄stat
c = 0.582, tan δ = 0.415, d = 160µm,

K = 4.09, K1 = 90.5, K2 = 25,
(16)

Low viscosity: ηf = 9.8× 10−3 Pa · s, ρf = 1026 kg/m3, |θ| = 28o,
h0

m = 6.1 mm. For the dense case: ϕ̄0 = 0.592.

Periodic boundary conditions.
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Inmersed non-uniform test

(b) Pe
fm (c) pe

fm = 0
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Inmersed non-uniform test

(d) Pe
fm (e) pe

fm = 0
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Inmersed non-uniform test

(f) Pe
fm (g) pe

fm = 0
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Inmersed non-uniform test

(h) Pe
fm (i) pe

fm = 0
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Inmersed non-uniform test
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Conclusions

Conclusions

A two-phase model for debris flows with dilatancy effects with two interfaces
has been proposed.

It is also possible to be used in inmersed configuration.

Numerical discretization based in IFCP method and a combination of two
hydrostatic reconstructions.
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